
DB2® DB2 Universal Database for z/OS

XML Extender

Administration and Programming

Version 8

SC18-7431-01

���

DB2® DB2 Universal Database for z/OS

XML Extender

Administration and Programming

Version 8

SC18-7431-01

���

Note

Before using this information and the product it supports, please read the general information under “Notices” on page 321.

Second Edition (October 2004)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), 5625-DB2, and to

any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for

the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption

indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1999, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this guide vii

Who should use this guide vii

How to get a current version of this guide vii

How to use this guide vii

Highlighting conventions viii

How to read syntax diagrams viii

Accessibility x

Part 1. Introduction 1

Chapter 1. Introduction 3

Introduction to XML Extender 3

XML Documents 3

How XML data is handled in DB2 4

Features of XML Extender 5

XML Extender tutorial lessons 7

Prerequisites 7

Scenario for the lessons 7

Lesson: Storing an XML document in an XML

column 8

Lesson: Composing an XML document 20

Part 2. Administration 35

Chapter 2. Administration 37

Administration tools for XML Extender 37

Preparing to administer XML Extender 37

Migrating XML Extender from Version 7 to Version

8 37

XML Extender administration planning 38

Setting up the administration wizard 39

Access and storage methods 40

When to use the XML column method 41

When to use the XML collection method 42

Planning for XML columns 42

XML data types for the XML columns 42

Elements and attributes to index for XML

columns 43

The DAD file for XML columns 43

Planning for XML collections 43

Validation 44

The DAD file for XML collections 44

Mapping schemes for XML collections 46

Decomposition table size requirements for RDB

node mapping 51

Validating XML documents automatically 52

Enabling servers for XML 53

Creating an XML table 53

Storing a DTD in the repository table 54

Enabling XML columns 55

Planning side tables 58

Indexing side tables 60

Composing XML documents by using SQL mapping 60

Composing XML collections by using RDB_node

mapping 63

Decomposing an XML collection by using

RDB_node mapping 65

Part 3. Programming 71

Chapter 3. XML columns 73

Managing data in XML columns 73

XML columns as a storage and access method . . . 73

Defining and enabling an XML column 74

Using indexes for XML column data 75

Storing XML data 76

Default casting functions for storing XML data 77

Storage UDFs for storing XML data 77

Method for retrieving an XML document 78

Retrieving an entire XML document 79

Retrieving element contents and attribute values

from XML documents 80

Updating XML data 82

Updating an entire XML document 82

Updating specific elements and attributes of an

XML document 83

Methods for searching XML documents 83

Searching the XML document by structure . . . 84

Using the DB2 UDB Text Extender for structural

text searches of XML documents 86

Deleting XML documents 88

Limitations when invoking functions from Java

Database (JDBC) 88

Chapter 4. Managing data in XML

collections 91

XML collections as a storage and access method . . 91

Managing data in XML collections 92

Preparing to compose XML documents from DB2

data 92

Decomposing XML documents into DB2 UDB data 96

Enabling an XML collection for decomposition . 97

Decomposition table size limits 100

Updating, deleting, and retrieving data in XML

collections 101

Updating data in an XML collection 101

Deleting an XML document from an XML

collection 102

Retrieving XML documents from an XML

collection 103

Searching XML collections 103

Composing XML documents using search

criteria 103

Searching for decomposed XML data 104

Mapping schemes for XML collections 104

Requirements for using SQL mapping 107

Requirements for RDB_Node mapping 109

© Copyright IBM Corp. 1999, 2004 iii

Stylesheets for an XML collection 112

Location paths 112

Location path syntax 113

Enabling XML collections 114

Disabling XML collections 116

Chapter 5. XML schemas 119

Advantages of using XML schemas instead of

DTDs 119

UDTs and UDF names for XML Extender 119

XML schema complexType element 120

Data types, elements and attributes in schemas . . 121

Simple data types in XML schemas 121

Elements in XML schemas 121

Attributes in XML schemas 121

Examples of an XML schema 122

XML document instance using the schema . . 123

XML document instance using a DTD 123

Part 4. Reference 125

Chapter 6. The dxxadm administration

command 127

dxxadm command overview 127

Syntax of the dxxadm administration command 127

Subcommands of the administration command . . 127

enable_server option of the dxxadm command 128

disable_server option of the dxxadm command 129

enable_column option of the dxxadm command 130

disable_column option of the dxxadm command 131

enable_collection option of the dxxadm

command 132

disable_collection option 132

Chapter 7. XML Extender user-defined

types 135

Chapter 8. XML Extender user-defined

functions 137

Types of XML Extender user-defined functions . . 137

Storage functions 138

Storage functions in XML Extender overview 138

XMLCLOBFromFile() function 138

XMLFileFromCLOB() function 138

XMLFileFromVarchar() function 139

XMLVarcharFromFile() function 140

Retrieval functions 141

Retrieval functions in XML Extender 141

Content(): retrieve from XMLFILE to a CLOB 142

Content(): retrieve from XMLVARCHAR to an

external server file 143

Content(): retrieval from XMLCLOB to an

external server file 145

Extraction functions 146

Extracting functions in XML Extender 146

extractInteger() and extractIntegers() 146

extractSmallint() and extractSmallints() 147

extractDouble() and extractDoubles() 149

extractReal() and extractReals() 150

extractChar() and extractChars() 151

extractVarchar() and extractVarchars() 152

extractCLOB() and extractCLOBs() 154

extractDate() and extractDates() 155

extractTime() and extractTimes() 156

extractTimestamp() and extractTimestamps() . . 157

Update functions in XML Extender 158

Purpose 158

Syntax 158

Parameters 159

Return type 159

Example 159

Usage 159

Validation functions 163

SVALIDATE() function 164

DVALIDATE() function 164

Chapter 9. Document access

definition (DAD) files 167

Creating a DAD file for XML columns 167

DAD files for XML collections 169

SQL composition 171

RDB node composition 171

Composition from rows that have null values 172

DTD for the DAD file 173

Dynamically overriding values in the DAD file . . 178

Dad Checker 184

Using the DAD checker 184

Checks performed by the DAD checker . . . 186

Attribute and element naming conflict 193

Chapter 10. XML Extender stored

procedures 195

XML Extender stored procedures 195

XML Extender administration stored procedures 195

dxxEnableDB() stored procedure 196

dxxDisableDB() stored procedure 196

dxxEnableColumn() stored procedure 197

dxxDisableColumn() stored procedure 198

dxxEnableCollection() stored procedure 199

dxxDisableCollection() stored procedure 200

XML Extender composition stored procedures . . 200

Calling XML Extender composition stored

procedures 201

Stored Procedures that return CLOBS 202

dxxGenXML() stored procedure 202

dxxRetrieveXML() stored procedure 206

dxxGenXMLClob stored procedure 210

dxxRetrieveXMLClob stored procedure 212

XML Extenders decomposition stored procedures 214

dxxShredXML() stored procedure 214

dxxInsertXML() stored procedure 217

Chapter 11. MQSeries stored

procedures and functions 221

XML Extender stored procedures and functions for

MQSeries 221

MQPublishXML function 222

MQReadXML function 223

MQReadAllXML function 225

iv XML Extender Administration and Programming

MQReadXMLCLOB function 227

MQReadAllXMLCLOB function 228

MQReceiveXML function 230

MQReceiveAllXML function 232

MQRcvAllXMLCLOB function 234

MQReceiveXMLCLOB function 235

MQSENDXML function 236

MQSENDXMLFILE function 238

MQSendXMLFILECLOB function 239

Types of stored procedures for message queues . . 240

dxxmqGen() stored procedure 242

dxxmqGenCLOB stored procedure 245

dxxmqRetrieve stored procedure 247

dxxmqRetrieveCLOB stored procedure 249

dxxmqShred stored procedure 251

dxxmqShredAll stored procedure 253

dxxmqShredCLOB stored procedure 254

dxxmqShredAllCLOB stored procedure 255

dxxmqInsert stored procedure 256

dxxmqInsertCLOB stored procedure 258

dxxmqInsertAll stored procedure 260

dxxmqInsertAllCLOB stored procedure 261

Chapter 12. Extensible stylesheet

language transformation (XSLT) . . . 265

Creating an HTML document using an XSLT

stylesheet 265

XSLTransformToClob() stored procedure 266

XSLTransformToFile() stored procedure 267

Chapter 13. XML Extender

administration support tables 269

DTD reference table 269

XML usage table (XML_USAGE) 269

Chapter 14. Troubleshooting 271

Troubleshooting XML_Extender 271

Starting the trace for XML Extender 271

Stopping the trace 272

XML Extender UDF return codes 273

XML Extenders stored procedure return codes . . 273

SQLSTATE codes and associated message numbers

for XML Extender 274

XML Extender messages 278

Appendix A. Samples 293

XML DTD sample 293

XML document sample: getstart.xml 293

Document access definition files 294

Sample DAD file: XML column 294

Sample DAD file: XML collection: SQL mapping 296

Sample DAD file: XML: RDB_node mapping 297

Appendix B. Code page

considerations 301

Terminology for XML code pages 301

DB2 and XML Extender code page assumptions 302

Assumptions for importing an XML document 302

Assumptions for exporting an XML document 303

Encoding declaration considerations for XML

Extender 304

Legal encoding declarations 304

Consistent encodings and encoding declarations 305

Consistent encodings in USS 306

Declaring an encoding 307

Conversion scenarios 307

Recommendations for preventing inconsistent XML

documents 308

Line ending considerations 309

Processing XML documents with the linebrk

utility 309

Appendix C. XML Extender limits . . . 311

Glossary 315

XML Extender glossary 315

Notices 321

Trademarks 323

Index 325

Contacting IBM 331

Product information 331

Contents v

vi XML Extender Administration and Programming

About this guide

 This section contains the following information:

v “Who should use this guide”

v “How to use this guide”

v “Highlighting conventions” on page viii

Who should use this guide

This guide is intended for the following people:

v Those who work with XML data in DB2® applications and who are familiar with

XML concepts. Readers of this document should have a general understanding

of XML and DB2 UDB for z/OS™. To learn more about XML, see the following

Web site:

http://www.w3.org/XML

To learn more about DB2, see the following Web site:

http://www.ibm.com/software/data/db2/library

v DB2 database administrators who are familiar with DB2 UDB administration

concepts, tools, and techniques.

v DB2 application programmers who are familiar with SQL and with one or more

programming languages that can be used for DB2 UDB applications.

How to get a current version of this guide

You can get the latest version of this book at the XML Extender Web site:

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

How to use this guide

This guide is structured as follows:

Part 1. Introduction

This part provides an overview of the XML Extender and how you can use

it in your business applications. It contains a getting-started scenario that

helps you get up and running.

Part 2. Administration

This part describes how to prepare and maintain a DB2 UDB database for

XML data. Read this part if you need to administer a DB2 UDB database

that contains XML data.

Part 3. Programming

This part describes how to manage your XML data. Read this part if you

need to access and manipulate XML data in a DB2 UDB application

program.

Part 4. Reference

This part describes how to use the XML Extender administration

commands, user-defined types, user-defined functions, and stored

procedures. It also lists the messages and codes that the XML Extender

issues. Read this part if you are familiar with the XML Extender concepts

© Copyright IBM Corp. 1999, 2004 vii

and tasks, but you need information about a user-defined type (UDT),

user-defined function (UDF), command, message, metadata tables, control

tables, or code.

Part 5. Appendixes

The appendixes describe the DTD for the document access definition,

samples for the examples and getting started scenario, and other IBM®

XML products.

Highlighting conventions

This books uses the following conventions:

Bold text indicates:

v Commands

v Field names

v Menu names

v Push buttons

Italic text indicates

v Variable parameters that are to be replaced with a value

v Emphasized words

v First use of a glossary term

Uppercase letters indicate:

v Data types

v Column names

v Table names

Example text indicates:

v System messages

v Values that you type

v Coding examples

v Directory names

v File names

How to read syntax diagrams

 Throughout this book, the syntax of commands and SQL statements is described

using syntax diagrams.

Read the syntax diagrams as follows:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next

line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───

symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

viii XML Extender Administration and Programming

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the statement and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates that an item that

can be repeated.

��

required_item

�

repeatable_item

��

v If the repeat arrow contains punctuation, you must separate repeated items with

the specified punctuation.

��

required_item

�

 ,

repeatable_item

��

v A repeat arrow above a stack indicates that you can repeat the items in the

stack.

About this guide ix

– Keywords appear in uppercase (for example, FROM). In the XML Extender,

keywords can be used in any case. Terms that are not keywords appear in

lowercase letters (for example, column-name). They represent user-supplied

names or values.

– If punctuation marks, parentheses, arithmetic operators, or other such

symbols are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility

features in z/OS products, including DB2 for MVS/ESA, enable users to:

v Use assistive technologies such as screen reader and screen magnifier software

v Operate specific or equivalent features by using only a keyboard

v Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 for

MVS/ESA user interfaces. Consult the documentation for the assistive technology

products for specific information when you use assistive technology to access these

interfaces.

Online documentation for Version 8 of DB2 for MVS/ESA is available in the DB2

Information Center, which is an accessible format when used with assistive

technologies such as screen reader or screen magnifier software. The DB2

Information Center for z/OS solutions is available at the following Web site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

x XML Extender Administration and Programming

Part 1. Introduction

This part provides an overview of the XML Extender and how you can use it in

your business applications.

© Copyright IBM Corp. 1999, 2004 1

2 XML Extender Administration and Programming

Chapter 1. Introduction

Introduction to XML Extender

 DB2’s XML Extender provides the ability to store and access XML documents, to

generate XML documents from existing relational data, and to insert rows into

relational tables from XML documents. XML Extender provides new data types,

functions, and stored procedures to manage your XML data in DB2 UDB).

The XML Extender is available for the following operating systems:

v Windows® NT

v Windows 2000

v AIX®

v Solaris Operating Environment

v Linux

v OS/390 and z/OS

v iSeries

 Related concepts:

v “XML Documents” on page 3

v “Features of XML Extender” on page 5

v “Lesson: Storing an XML document in an XML column” on page 8

v “Lesson: Composing an XML document” on page 20

v “XML Extender tutorial lessons” on page 7

XML Documents

 Because companies tend to share data between different applications, companies

are continually faced with the problem of replicating, transforming, exporting, or

saving their data in formats that can be imported into other applications. Many of

these transforming processes tend to drop some of the data, or they at least require

that users go through the tedious process of ensuring that the data remains

consistent. This manual checking consumes both time and money.

One of the ways to address this problem is for application developers to write

Open Database Connectivity (ODBC) applications, a standard application

programming interface (API) for accessing data in both relational and

non-relational database management systems. These applications save the data in a

database management system. From there, the data can be manipulated and

presented in the form in which it is needed for another application. Database

applications must be written to convert the data into a form that an application

requires. Applications change quickly and quickly become obsolete. Applications

that convert data to HTML provide presentation solutions, but the data presented

cannot be practically used for other purposes. A method that separates the data

from its presentation is needed to provide a practical form of interchange between

applications.

XML—eXtensible Markup Language—addresses this problem. XML is extensible

because the language is a meta-language that allows you to create your own

© Copyright IBM Corp. 1999, 2004 3

|

language based on the needs of your enterprise. You use XML to capture not only

the data for your particular application, but also the data structure. Although it is

not the only data interchange format, XML has emerged as the accepted standard.

By adhering to this standard, applications can share data without first

transforming it using proprietary formats.

Because XML is now the accepted standard for data interchange, many

applications are emerging that will be able to take advantage of it.

Suppose that you are using a particular project management application and you

want to share some of its data with your calendar application. Your project

management application could export tasks in XML, which could then be imported

as-is into your calendar application. In today’s interconnected world, application

providers have strong incentives to make an XML interchange format a basic

feature of their applications.

How XML data is handled in DB2

 Although XML solves many problems by providing a standard format for data

interchange, some challenges remain. When building an enterprise data

application, you must answer questions such as:

v How often do I want to replicate the data?

v What kind of information must be shared between applications?

v How can I quickly search for the information I need?

v How can I make a particular action, such as a new entry being added, trigger an

automatic data interchange between all of my applications?

These kinds of issues can be addressed only by a database management system. By

incorporating the XML information and meta-information directly in the database,

you can more efficiently obtain the XML results that your other applications need.

With the XML Extender, you can take advantage of the power of DB2® in many

XML applications.

With the content of your structured XML documents in a DB2 UDB database, you

can combine structured XML information with traditional relational data. Based on

the application, you can choose whether to store entire XML documents in DB2 in

user-defined types provided for XML data (XML data types), or you can map the

XML content as base data types in relational tables. For XML data types, XML

Extender adds the power to search rich data types of XML element or attribute

values, in addition to the structural text search that the OS/390® Text Extender

provides.

XML Extender provides two methods of storing and access for XML data in DB2:

XML column method

 Stores entire XML documents as column data or externally as a file, and

extracts the required XML element or attribute value and stores it in side

tables, indexed subtables for high-speed searching. By storing the

documents as column data, you can:

v Perform fast search on XML elements or attributes that have been

extracted and stored in side tables as SQL basic data types and indexed.

v Update the content of an XML element or the value of an XML attribute.

v Extract XML elements or attributes dynamically using SQL queries.

4 XML Extender Administration and Programming

v Validate XML documents when they are inserted and updated.

v Perform structural-text search with the Text Extender.

XML collection method

Composes and decomposes contents of XML documents with one or more

relational tables.

Features of XML Extender

 XML Extender provides the following features to help you manage and exploit

XML data with DB2:

v Administration tools to help you manage the integration of XML data in

relational tables

v Storage and access methods for XML data within the database

v A data type definition (DTD) repository for you to store DTDs used to validate

XML data

v A mapping file called the Document Access Definition (DAD), which is used to

map XML documents to relational data

v Location paths to specify the location of an element or attribute within an XML

document.

Administration tools: The XML Extender administration tools help you enable

your database and table columns for XML, and map XML data to DB2® relational

structures.

XML Extender provides a command line tool, an administration wizard, and

programming interfaces for administration tasks.

v The dxxadm command can be run from UNIX® System Services (USS).

v JCL based on samples provided in the SDXXJCL data set

v The XML Extender administration stored procedures allow you to invoke

administration commands from a program.

Storage and access methods: XML Extender provides two storage and access

methods for integrating XML documents with DB2 data structures: XML column

and XML collection. These methods have very different uses, but can be used in

the same application.

XML column method

This method helps you store intact XML documents in DB2. The XML

column method works well for archiving documents. The documents are

inserted into columns enabled for XML and can be updated, retrieved, and

searched. Element and attribute data can be mapped to DB2 UDB tables

(side tables), which can be indexed for fast search.

XML collection method

This method helps you map XML document structures to DB2 UDB tables

so that you can either compose XML documents from existing DB2 UDB

data, or decompose XML documents, storing the untagged data in DB2

UDB tables. This method is good for data interchange applications,

particularly when the contents of XML documents are frequently updated.

DTDs:The XML Extender also allows you to store DTDs, the set of declarations for

XML elements and attributes. When a database server is enabled for XML, a DTD

repository table (DTD_REF) is created. Each row of this table represents a DTD

Chapter 1. Introduction 5

with additional metadata information. Users can access this table to insert their

own DTDs. The DTDs are used for validating the structure of XML documents.

DAD files: You specify how structured XML documents are to be processed by

XML Extender using a document access definition (DAD) file. The DAD file is an

XML document that maps the XML document structure to a DB2 UDB table. You

use a DAD file when storing XML documents in a column, or when composing or

decomposing XML data. The DAD file specifies whether you are storing

documents using the XML column method, or defining an XML collection for

composition or decomposition.

Location paths: A location path specifies the location of an element or attribute

within an XML document. The XML Extender uses the location path to navigate

the structure of the XML document and locate elements and attributes.

For example, a location path of /Order/Part/Shipment/ShipDate points to the

shipDate element, that is a child of the Shipment, Part, and Order elements, as

shown in the following example:

<Order>

 <Part>

 <Shipment>

 <ShipDate>

+...

Figure 1 shows an example of a location path and its relationship to the structure

of the XML document.

The location path is used in the following situations:

XML columns

v Used to identify the elements and attributes to be extracted or updated

when using the XML Extender user-defined functions.

v Also used to map the content of an XML element or attribute to a side

table.

XML collections

Used to override values in the DAD file from a stored procedure.

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 1. Storing documents as structured XML documents in a DB2 UDB table column

6 XML Extender Administration and Programming

To specify the location path, XML Extender uses a subset of the XML Path Language

(XPath), the language for addressing parts of an XML document.

For more information about Xpath, see the following Web page:

http://www.w3.org/TR/xpath

 Related concepts:

v “How XML data is handled in DB2” on page 4

v “Lesson: Storing an XML document in an XML column” on page 8

v “Lesson: Composing an XML document” on page 20

v “XML Extender tutorial lessons” on page 7

XML Extender tutorial lessons

 This tutorial shows you how to get started using XML Extender to access and

modify XML data for your applications. Three lessons are provided:

v Storing an XML document in an XML column

v Composing an XML document

v Cleaning up the database

By following the tutorial lessons, you can set up a database using provided sample

data, map SQL data to an XML document, store XML documents in the database,

and then search and extract data from the XML documents.

In the administration lessons, you use the odb2 command for UNIX® System

Services (USS) with XML Extender administration commands. In XML data

management lessons, you use XML Extender UDFs and stored procedures. Most of

the examples in the rest of the book draw on the sample data that is used in this

chapter.

Prerequisites

To complete the lessons in this tutorial, you must have the following prerequisites

installed:

v DB2 for z/OS™ Version 8

v XML Toolkit for z/OS Version 1.4

v USS set up

v odb2 command line or the DXXGPREP JCL job

In addition, the DB2 UDB database server must have been enabled by the DB2

UDB administrator.

Scenario for the lessons

In these lessons, you work for ACME Auto Direct, a company that distributes cars

and trucks to automotive dealerships. You have two tasks. First you will set up a

system in which orders can be archived in the SALES_DB database for querying by

the sales department. Next, you extract information in an existing purchase order

database, SALES_DB.

 Methods to run the lessons:

 Two methods for running the scripts and commands are provided.

Chapter 1. Introduction 7

v Use the odb2 command line to run SQL statements.

From USS prompt type:

odb2

A command prompt is displayed, from which you can enter SQL commands.

v You can submit batch jobs that will issue equivalent steps.

 Related concepts:

v “Administration tools for XML Extender” on page 37

v “XML Extender administration planning” on page 38

v “Lesson: Storing an XML document in an XML column” on page 8

v “Lesson: Composing an XML document” on page 20

Lesson: Storing an XML document in an XML column

The XML Extender provides a method of storing and accessing whole XML

documents in the database. The XML column method enables you to store the

document using the XML file types, index the column in side tables, and then

query or search the XML document. This storage method is particularly useful for

archival applications in which documents are not frequently updated.

This lesson shows you how to use the XML column storage and access method.

 The scenario:

 You have the task of archiving the sales data for the service department. The sales

data that you need to work with is stored in XML documents that use the same

DTD.

The service department provided a recommended structure for the XML

documents and specified which element data will be queried most frequently. The

service department wants the XML documents stored in the SALES_TAB table in

the SALES_DB database and wants to be able to search them quickly. The

SALES_TAB table will contain two columns with data about each sale, and a third

column will contain the XML document. This column is called ORDER.

To store this XML document in the SALES_TAB table, you will:

1. Determine the XML Extender user-defined types (UDTs) in which to store the

XML document, as well as which XML elements and attributes will be

frequently queried.

2. Set up the SALES_DB database for XML.

3. Create the SALES_TAB table, and enable the ORDER column so that you can

store the intact document in DB2.

4. Insert a DTD for the XML document for validation.

5. Store the document as an XMLVARCHAR data type.

When you enable the column, you will define side tables to be indexed for the

structural search of the document in a document access definition (DAD) file, an

XML document that specifies the structure of the side tables.

The SALES_TAB table is described in Table 1 on page 9. The XML column to be

enabled for XML, ORDER, is shown in italics.

8 XML Extender Administration and Programming

Table 1. SALES_TAB table

Column name Data type

INVOICE_NUM CHAR(6) NOT NULL PRIMARY KEY

SALES_PERSON VARCHAR(20)

ORDER XMLVARCHAR

The scripts and samples:

For this tutorial, you use a set of scripts and JCL samples to set up your

environment and perform the steps in the lessons. These scripts are in the

dxx_install/samples/db2xml/cmd directory (where dxx_install is the directory

where you installed the XML Extender files). The JCL is in library SDXXJCL.

These scripts are:

getstart_db.cmd

Creates the database and populates four tables.

getstart_prep.cmd

Binds the database server with the XML Extender stored procedures and

the DB2® CLI and enables the database server for XML Extender.

getstart_insertDTD.cmd

Inserts the DTD used to validate the XML document in the XML column.

getstart_createTabCol.cmd

Creates an application table that will have an XML-enabled column.

getstart_alterTabCol.cmd

Alters the application table by adding the column that will be enabled for

XML.

getstart_enableCol.cmd

Enables the XML column.

getstart_createIndex.cmd

Creates indexes on the side tables for the XML column.

getstart_insertXML.cmd

Inserts the XML document into the XML column.

getstart_queryCol.cmd

Runs a select statement on the application table and returns the XML

document.

getstart_stp.cmd

Runs the stored procedure to compose the XML collection.

getstart_exportXML.cmd

Exports the XML document from the database for use in an application.

getstart_clean.cmd

Cleans up the tutorial environment.

Table 2 on page 10 lists the USS and JCL samples that are provided to complete the

tasks in the lesson, as well as the suggested role in the organization that might

have the correct authority to run the samples. Each task is completed either by an

administrator or application developer.

Chapter 1. Introduction 9

Table 2. Scripts provided for the XML column lessons

Role USS command files Description JCL member

name

administrator getstart_db.cmd Creates and

populates the

database and tables

used for the lesson

dxxgdb

administrator getstart_prep.cmd Binds and enables

the database server

dxxgprep

application

developer

getstart_insertDTD.cmd Inserts the dtd

getstart.dtd into the

dtd_ref table

dxxgidtd

administrator getstart_createTabCol.cmd Creates SALES_TAB

for XML column

dxxgctco

administrator getstart_alterTabCol.cmd Adds the ORDER

column to

SALES_TAB

dxxgatco

administrator getstart_enableCol.cmd Enables the ORDER

column as an XML

column

dxxgecol

administrator getstart_createIndex.cmd Create indexes on

side tables

dxxgcrin

application

developer

getstart_insertXML.cmd Inserts an XML

document into the

SALES_TAB XML

column

dxxgixml

application

developer

getstart_queryCol.cmd Queries the XML

document held in the

sales_tab XML

column through the

side tables

dxxgcqol

application

developer

getstart_stp.cmd Runs the stored

procedure to

compose the XML

collection

dxxgstp

application

developer

getstart_exportXML.cmd Exports the XML

document from the

database for use in

an application

dxxexml

administrator getstart_clean.cmd Cleans up the

environment

dxxgclen

These samples are provided for your use in your applications.

 Planning how to store the document:

 Before you use the XML Extender to store your documents, you need to:

v Understand the XML document structure.

v Determine the XML user-defined type in which you will store the XML

document.

v Determine the XML elements and attributes that the service department will

frequently search, so that the content of these can be stored in side tables and

indexed to improve performance.

10 XML Extender Administration and Programming

The following sections will explain how to make these decisions.

 The XML document structure:

 The XML document structure for this lesson takes information for a specific order

that is structured by the order key as the top level, then customer, part, and

shipping information on the next level.

This lesson provides the sample DTD for you to understand and validate the XML

document structure.

 Determining the XML data type for the XML column:

 The XML Extender provides XML user defined types that you can use to define a

column to hold XML documents. These data types are:

XMLVARCHAR

Used for documents smaller than 3 kilobytes stored in DB2. The maximum

size of XMLVARCHAR documents can be redefined to as large as 32672

kilobytes.

XMLCLOB

Used for documents larger than 3 kilobytes stored in DB2. The maximum

document size is 2 gigabytes.

XMLFILE

Used for documents stored outside DB2.

In this lesson, you will store a small document in DB2, so you will use the

XMLVARCHAR data type.

 Determining elements and attributes to be searched:

 When you understand the XML document structure and the needs of the

application, you can determine which elements and attributes will be searched or

extracted most frequently, or those that will be the most expensive to query. The

service department will frequently query the order key, customer name, price, and

shipping date of an order, and they will need quick performance for these

searches. This information is contained in elements and attributes of the XML

document structure. Table 3 describes the location paths of each element and

attribute.

 Table 3. Elements and attributes to be searched

Data Location Path

order key /Order/@key

customer name /Order/Customer/Name

price /Order/Part/ExtendedPrice

shipping date /Order/Part/Shipment/ShipDate

 Mapping the XML document to the side tables:

 To map your XML documents to a side table, you must create a DAD file for the

XML column. The DAD file is used to store the XML document in DB2. It also

maps the XML element and attribute contents to DB2 UDB side tables used for

indexing, which improves search performance.

Chapter 1. Introduction 11

After identifying the elements and attributes to be searched, you determine how

they should be organized in the side tables, how many tables to use, and which

columns are in what table. Organize the side tables by putting similar information

in the same table. The document structure is also determined by whether the

location path of any elements can be repeated more than once in the document.

For example, in the document, the part element can be repeated multiple times,

and therefore, the price and date elements can occur multiple times. Elements that

can occur multiple times must each be in their own side tables.

You must also determine what DB2 UDB base types the element or attribute values

should use, which is determined by the format of the data.

v If the data is text, use VARCHAR.

v If the data is an integer, use INTEGER.

v If the data is a date, and you want to do range searches, use DATE.

In this tutorial, the elements and attributes are mapped to either

ORDER_SIDE_TAB, PART_SIDE_TAB or, SHIP_SIDE_TAB. The tables below show

which table each element or attribute is mapped to.

ORDER_SIDE_TAB

 Column name Data type Location path Multiple

occurring?

ORDER_KEY INTEGER /Order/@key No

CUSTOMER VARCHAR(16) /Order/Customer/Name No

PART_SIDE_TAB

 Column name Data type Location path Multiple

occurring?

PRICE DECIMAL(10,2) /Order/Part/ExtendedPrice Yes

SHIP_SIDE_TAB

 Column name Data type Location path Multiple

occurring?

DATE DATE /Order/Part/Shipment/ShipDate Yes

 Creating the SALES_DB database:

 In this task, you create a sample database and enable the database for XML.

To create the database:

1. Ensure that the database server was enabled by the DB2 UDB administrator.

2. Change to the dxx_install/samples/db2xml/cmd directory, where dxx_install

is the directory where you installed the XML Extender files. The sample

files contain references to files that use absolute path names. Check the sample

files and change these values for your directory paths.

3. Run the getstart_db command:

From the odb2 command line: Enter the following command:

getstart_db.cmd

TSO: Submit the dxxgdb JCL job.

12 XML Extender Administration and Programming

Enabling the server:

 To store XML information in the database, you need to enable it for the XML

Extender. When you enable a database for XML, XML Extender:

v Creates user-defined types (UDTs), user-defined functions (UDFs), and stored

procedures

v Creates and populates control tables with the necessary metadata that the XML

Extender requires

v Creates the DB2XML schema and assigns the necessary privileges

To enable the database for XML:

Use one of the following methods to enable the database.

Run the following script:

getstart_prep.cmd

This script runs the dxxadm command option that enables the database:

dxxadm enable_server -a subsystem-name wlm environment wlm-name

 Enabling the XML column and storing the document:

 In this lesson, you will enable a column for XML Extender and store an XML

document in the column. For these tasks, you will:

1. Store the DTD in the DTD repository

2. Create a DAD file for the XML column

3. Create the SALES_TAB table

4. Add the column of XML type

5. Enable the XML column

6. View the column and side tables

7. Index the side tables for structural search.

8. Store the XML document

 Storing the DTD in the DTD repository:

 You can use a DTD to validate XML data in an XML column. The XML Extender

creates a table in the XML-enabled database, called DTD_REF. The table is known

as the DTD repository and is available for you to store DTDs. When you validate

XML documents, you must store the DTD in this repository. The DTD for this

lesson is in

dxx_install/samples/db2xml/dtd/getstart.dtd

where dxx_install is the directory where you installed DB2 XML Extender.

Command line:

v Enter the following SQL INSERT command, all on the same DB2 command line:

INSERT into DB2XML.DTD_REF values

(’dxx_install/samples/db2xml/dtd/getstart.dtd,

 DB2XML.XMLClobFromFile

(’dxx_install/samples/db2xml/dtd/getstart.dtd),

 0, ’user1’, ’user1’, ’user1’)

v Run the following command file to insert the DTD:

getstart_insertDTD.cmd

Chapter 1. Introduction 13

TSO: Submit the dxxgidtd JCL job.

 Creating a DAD file for the XML column:

 This section explains how you create a DAD file for the XML column. In the DAD

file, you specify that the access and storage method you are using is XML column.

In the DAD file you define the tables and columns for indexing.

In the following steps, elements in the DAD are referred to as tags and the

elements of your XML document structure are referred to as elements. A sample of

a DAD file similar to the one you will create is in

dxx_install/samples/db2xml/dad/getstart_xcolumn.dad . It has some minor

differences from the file generated in the following steps. If you use it for the

lesson, the file paths might be different than for your environment; the

<validation> value is set to NO, rather than YES.

To create a DAD file for use with XML column:

1. Open a text editor and name the file getstart_xcolumn.dad

All the tags used in the DAD file are case sensitive.

2. Create the DAD header, with the XML and the DOCTYPE declarations.

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "/dxx_install/samples/DB2XML/dtd/dad.dtd ">

The DAD file is an XML document and requires XML declarations.

3. Insert start and end (<DAD> and</DAD>) tags for the document. All other

tags are located inside these tags.

4. Insert start and end (<DTDID> and</DTDID>) tags with a DTD ID to specify

a DTD if the document will be validated:

<dtdid>dxx_install/samples/db2xml/dtd/getstart.dtd</dtdid>

Verify that this string matches the value used as the first parameter value when

you insert the DTD in the DTD repository table. For example, the path that you

use for the DTDID might be different from the string mentioned you inserted

in the DTD reference table if you are working on a different machine drive.

5. Insert start and end (<validation> and </validation>) tags and a keyword YES

or NO to indicate whether you want XML Extender to validate the XML

document structure using the DTD that you inserted into the DTD reference

table. For example:

<validation>YES</validation>

The value of <validation> can be in mixed case.

6. Insert start and end (<Xcolumn> and</Xcolumn>) tags to specify that the

storage method is XML column.

7. Create side tables. For each side table that you want to create:

a. Insert start and end (<table> and </table>) tags for each side table that is to

be generated, and specify the name of the side table in double quotation

marks using the ″name=″ attribute as shown here:

<Xcolumn>

<table name="order_side_tab">

</table>

<table name="part_side_tab">

</table>

<table name="ship_side_tab">

</table>

</Xcolumn>

14 XML Extender Administration and Programming

b. Inside the table tags, insert a <column> tag for each column that you want

the side table to contain. Each column has four attributes: name, type, path,

and multi_occurrence.

Example:

<table name="person_names">

<column name ="fname"

 type="varchar(50)"

 path="/person/firstName"

 multi_occurrence="NO"/>

<column name ="lname"

 type="varchar(50)"

 path="/person/lastName"

 multi_occurrence="NO"/>

</table>

Where:

name Specifies the name of the column that is created in the side table.

type Indicates the data type in the side table for each indexed element or

attribute.

path Specifies the location path in the XML document for each element

or attribute to be indexed.

multi_occurrence

Indicates whether the element or attribute referred to by the path

attribute can occur more than once in the XML document. The

possible values for multi_occurrence are YES or NO. If the value is

NO, then you can mention more than one column tag in the side

table. If the value is YES, you can mention only one column in the

side table.
<Xcolumn>

<table name="order_side_tab">

 <column name="order_key"

 type="integer"

 path="/Order/@key"

 multi_occurrence="NO"/>

 <column name="customer"

 type="varchar(50)"

 path="/Order/Customer/Name"

 multi_occurrence="NO"/>

</table>

<table name="part_side_tab">

 <column name="price"

 type="decimal(10,2)"

 path="/Order/Part/ExtendedPrice"

 multi_occurrence="YES"/>

</table>

<table name="ship_side_tab">

 <column name="date"

 type="DATE"

 path="/Order/Part/Shipment/ShipDate"

 multi_occurrence="YES"/>

</table>

</Xcolumn>

8. Ensure that you have the necessary end tags:

v A closing </Xcolumn> tag after the last </table> tag

v A closing </DAD> tag after the </Xcolumn> tag
9. Save the file with the following name:

getstart_xcolumn.dad

Chapter 1. Introduction 15

You can compare the file that you just created with the sample file,

dxx_install/samples/db2xml/dad/getstart_xcolumn.dad . This file is a working

copy of the DAD file required to enable the XML column and create the side

tables. The sample files contain references to files that use absolute path names.

Check the sample files and change these values for your directory paths.

 Creating the SALES_TAB table:

 In this section you create the SALES_TAB table. Initially, it has two columns with

the sale information for the order.

To create the table:

Enter the following CREATE TABLE statement using one of the following methods:

Command line:

v Enter the following DB2 UDB commands:

DB2 CREATE TABLE SALES_TAB(INVOICE_NUM CHAR(6)

 NOT NULL PRIMARY KEY,

 SALES_PERSON VARCHAR(20))

v Run the following command file to create the table:

getstart_createTabCol.cmd

TSO: Submit the dxxgctco JCL job.

 Adding the column of XML type:

 Add a new column to the SALES_TAB table. This column will contain the intact

XML document that you generated earlier and must be of an XML UDT. The XML

Extender provides multiple data types. In this lesson, you will store the document

as XMLVARCHAR.

To add the column of XML type:

Run the SQL ALTER TABLE statement using one of the following three methods:

Command line:

v Enter the following SQL statement:

DB2 ALTER TABLE SALES_TAB ADD \ORDER\ DB2XML.XMLVARCHAR

v Run the following command file to alter the table:

getstart_alterTabCol.cmd

TSO: Submit the dxxgatco JCL job.

 Enabling the XML column:

 After you create the column of XML type, you enable it for XML Extender. When

you enable the column, XML Extender reads the DAD file and creates the side

tables. Before enabling the column, you must:

v Determine whether you want to create a default view of the XML column, which

contains the XML document joined with the side-table columns. You can specify

the default view when querying the XML document. In this lesson, you will

specify a view with the -v parameter.

16 XML Extender Administration and Programming

v Determine whether you want to specify a primary key as the ROOT ID, the

column name of the primary key in the application table and a unique identifier

that associates all side tables with the application table. If you do not specify a

primary key, XML Extender adds the DXXROOT_ID column to the application

table, and to the side tables.

The ROOT_ID column is used as key to tie the application and side tables

together, which allows the XML Extender to automatically update the side tables

if the XML document is updated. In this lesson, you will specify the name of the

primary key in the command (INVOICE_NUM) with the -r parameter. The XML

Extender will then use the specified column as the ROOT_ID and add the

column to the side tables.

v Determine whether you want to specify a table space or use the default table

space. In this lesson, you will use the default table space.

To enable the column for XML:

Run the dxxadm enable_column command, using one of the following three

methods:

Command line:

v Enter the following command:

dxxadm enable_column -a V81A SALES_TAB ORDER getstart_xcolumn.dad

 -v SALES_ORDER_VIEW -r INVOICE_NUM

v Run the following command file to enable the column:

getstartenableCol.cmd

TSO: Submit the dxxgecol JCL job.

The XML Extender creates the side tables with the INVOICE_NUM column and

creates the default view.

Important: Do not modify the side tables in any way. Updates to the side tables

should only be made through updates to the XML document itself. The XML

Extender will automatically update the side tables when you update the XML

document in the XML column.

 Viewing the column and side tables:

 When you enabled the XML column, you created a view of the XML column and

side tables. You can use this view when working with the XML column.

To view the XML column and side-table columns:

Enter the following SQL SELECT statement from the command line:

odb2 SELECT * FROM SALES_ORDER_VIEW

The view shows the columns in the side tables, as specified in the

getstart_xcolumn.dad file.

 Indexing side tables for structural search:

 Creating indexes on side tables allows you to do fast structural searches of the

XML document. In this section, you create indexes on key columns in the side

tables that were created when you enabled the XML column, ORDER. The service

department has specified which columns their employees are likely to query most

Chapter 1. Introduction 17

often. Table 4 describes these columns that you will index.

 Table 4. Side-table columns to be indexed

Column Side table

ORDER_KEY ORDER_SIDE_TAB

CUSTOMER ORDER_SIDE_TAB

PRICE PART_SIDE_TAB

DATE SHIP_SIDE_TAB

To index the side tables:

Run the following CREATE INDEX SQL commands using one of the following

three methods:

Command line:

v Enter the following commands:

DB2 CREATE INDEX KEY_IDX

 ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX

 ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX

 ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX

 ON SHIP_SIDE_TAB(DATE)

v Run the following command file to create the indexes:

getstart_createIndex.cmd

TSO: Submit the dxxgcrin JCL job.

 Storing the XML document:

 Now that you enabled a column that can contain the XML document and indexed

the side tables, you can store the document using the functions that the XML

Extender provides. When storing data in an XML column, you either use default

casting functions or XML Extender UDFs. Because you will be storing an object of

the base type VARCHAR in a column of the XML UDT XMLVARCHAR, you will

use the default casting function.

To store the XML document:

1. Open the XML document dxx_install/samples/db2xml/xml/getstart.xml

Ensure that the file path in the DOCTYPE matches the DTD ID specified in the

DAD and when inserting the DTD in the DTD repository. You can verify they

match by querying the DB2XML.DTD_REF table and by checking the DTDID

element in the DAD file. If you are using a different drive and directory

structure than the default, you need to change the path in the DOCTYPE

declaration to match your directory structure.

2. Run the SQL INSERT command, using one of the following methods:
 Command line:

v Enter the following SQL INSERT command:

18 XML Extender Administration and Programming

DB2 INSERT INTO SALES_TAB (INVOICE_NUM, SALES_PERSON, ORDER) VALUES

(’123456’, ’Sriram Srinivasan’, DB2XML.XMLVarcharFromFile

(’dxx_install/samples/db2xml/

/xml/getstart.xml ’))

v Run the following command file to store the document:

getstart_insertXML.cmd

TSO: Submit the dxxgixml JCL job.

Verify that the tables have been updated. Run the following SELECT statements for

the tables from the command line.

SELECT * FROM SALES_TAB

SELECT * FROM PART_SIDE_TAB

SELECT * FROM ORDER_SIDE_TAB

SELECT * FROM SHIP_SIDE_TAB

 Querying the XML document:

 You can search the XML document with a direct query against the side tables. In

this step, you will search for all orders that have a price over 2500.00.

To query the side tables:

Run the SQL SELECT statement, using one of the following methods:

v Run QueryCol.sql

Command line: Either:

v Enter the following SQL SELECT statement:

DB2 "SELECT DISTINCT SALES_PERSON FROM SALES_TAB S,

 PART_SIDE_TAB P WHERE PRICE > 2500.00

 AND S.INVOICE_NUM=P.INVOICE_NUM"

v Run the following command file to search the document:

getstart_queryCol.cmd

v TSO: Submit the dxxgcqol JCL job.

The result set should show the names of the salespeople who sold an item that had

a price greater than 2500.00.

You have completed the getting started tutorial for storing XML documents in DB2

UDB tables. For Example:

SALES_PERSON

Sriram Srinivasan

 Related concepts:

v “Introduction to XML Extender” on page 3

v “Lesson: Composing an XML document” on page 20

v “XML Extender tutorial lessons” on page 7

Chapter 1. Introduction 19

Lesson: Composing an XML document

 This lesson teaches you how to compose an XML document from existing DB2®

data.

 The scenario:

 You have the task of taking information in an existing purchase order database,

SALES_DB, and extracting requested information from it to be stored in XML

documents. The service department will then use these XML documents when

working with customer requests and complaints. The service department has

requested specific data to be included and has provided a recommended structure

for the XML documents.

Using existing data, you will compose an XML document, getstart.xml, from data

in these tables.

To compose an XML document, you will plan and create a DAD file that maps

columns from the related tables to an XML document structure that provides a

purchase order record. Because this document is composed from multiple tables,

you will create an XML collection and associate these tables with an XML structure

and a DTD. You use this DTD to define the structure of the XML document. You

can also use it to validate the composed XML document in your applications.

The existing database data for the XML document is described in the following

tables. The column names with an asterisk are columns that the service department

has requested in the XML document structure.

ORDER_TAB

 Column name Data type

ORDER_KEY * INTEGER

CUSTOMER VARCHAR(16)

CUSTOMER_NAME * VARCHAR(16)

CUSTOMER_EMAIL * VARCHAR(16)

PART_TAB

 Column name Data type

PART_KEY * INTEGER

COLOR * CHAR(6)

QUANTITY * INTEGER

PRICE * DECIMAL(10,2)

TAX * REAL

ORDER_KEY INTEGER

SHIP_TAB

 Column name Data type

DATE * DATE

MODE * CHAR(6)

20 XML Extender Administration and Programming

Column name Data type

COMMENT VARCHAR(128)

PART_KEY INTEGER

 Planning:

 Before you use the XML Extender to compose your documents, you need to

determine the structure of the XML document and how it corresponds to the

structure of your database data. This section provides an overview of the XML

document structure that the service department requested, and the DTD that you

will use to define the structure of the XML document. This section also shows how

this document maps to the columns that contain the data used to populate the

documents.

 Determining the document structure:

 The XML document structure takes information for a specific order from multiple

tables and creates an XML document for the order. These tables each contain

related information about the order and can be joined on their key columns. The

service department wants a document that is structured by the order number as

the top level, and then customer, part, and shipping information. The service

department wants the document structure to be intuitive and flexible, with

elements that describe the data rather than the structure of the document. (For

example, the customer’s name should be in an element called “customer,” rather

than a paragraph.)

After you design the document structure, you create a DTD to describe the

structure of the XML document. This lesson provides an XML document and a

DTD for you. Using the rules of the DTD, and the hierarchical structure of the

XML document, you can create a hierarchical map of your data, as shown in

Figure 2 on page 22.

Chapter 1. Introduction 21

Mapping the XML document and database relationship:

 After you design the structure and create the DTD, you need to show how the

structure of the document relates to the DB2 UDB tables that you will use to

populate the elements and attributes. You can map the hierarchical structure to

specific columns in the relational tables, as shown in Figure 3 on page 23.

ShipDate

+

American Motors

1998-08-19 Boat

68

=Attribute =Element =Value

<?xml encoding= ?>
<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax, Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

"ibm-1047" <?xml version="1.0"?>
<!DOCTYPE Order SYSTEM

<Order key="1">
<Customer>

<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black ">

<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>

</Part>
</Order>

>" samples/dtd/getstart.dtd"dxx_install

…

DTD Raw data

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02
ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 2. The hierarchical structure of the DTD and XML document

22 XML Extender Administration and Programming

This figure uses nodes to show elements, attributes, and text within the XML

document structure. These nodes are used in the DAD file and are explained more

fully in later steps.

Use this relationship description to create DAD files that define the relationship

between the relational data and the XML document structure.

To create the XML collection DAD file, you need to understand how the XML

document corresponds to the database structure, as described in Figure 3, so that

you can describe from what tables and columns the XML document structure

derives data for elements and attributes. You will use this information to create the

DAD file for the XML collection.

 The scripts and samples:

 This lesson provides a set of scripts for you to use to set up your environment.

These scripts are in the dxx_install/samples/db2xml/xml directory (where

dxx_install is the directory in USS where the sample DTD, DAD, and XML

files are located).

The scripts are:

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure 3. XML document mapped to relational table columns

Chapter 1. Introduction 23

Table 5 lists the USS and JCL samples that are provided to complete the getting

started tasks.

 Table 5. List of the XML collection lesson samples

Role Description USS command files JCL file

administrator Creates and

populates the tables

used for the lesson

Getstart_db.cmd dxxgdb

administrator Binds and enables

the database

Getstart_prep.cmd dxxgprep

administrator Run a stored

procedure to

compose an XML

document

Getstart_stp.cmd dxxgstp

administrator Exports a generated

XML document

from DB2

Getstart_export.cmd dxxgexml

administrator Cleanup the

environment

Getstart_clean.cmd dxxgclen

 Important: If you completed the XML column lesson and did not clean up your

environment, you might be able to skip this step. Check to see if you have a

SALES_DB database.

To create the database:

1. Ensure that the database server was enabled by the DB2 administrator.

2. Change to the dxx_install/samples/db2xml/xml directory, where dxx_install

is the directory in USS where the sample DTD, DAD, and XML files are

located. The sample files contain references to files that use absolute path

names. Check the sample files and change these values for your directory

paths.

3. Run the create database command file, using one of the following methods:

odb2 command line: Enter the following command:

getstart_db.cmd

TSO: Submit the dxxgdb JCL job.

To store XML information in the database, you need to enable it for the XML

Extender. When you enable a database for XML, the XML Extender:

v Creates the user-defined types (UDTs), user-defined functions (UDFs), and stored

procedures.

v Creates and populates control tables with the necessary metadata that the XML

Extender requires.

Important: If you completed the XML column lesson and did not clean up your

environment, you might be able skip this step.

To enable the database for XML, use one of the following methods:

 Creating the DAD file for the XML collection:

24 XML Extender Administration and Programming

Because the data already exists in multiple tables, you will create an XML

collection, which associates the tables with the XML document. You define the

collection by creating a DAD file.

In this section, you create the mapping scheme in the DAD file that specifies the

relationship between the tables and the structure of the XML document.

In the following steps, elements in the DAD are referred to as tags and the

elements of your XML document structure are referred to as elements. A sample of

a DAD file similar to the one you will create is in

dxx_install/samples/db2xml/dad/getstart_xcollection.dad.

It has some minor differences from the file generated in the following steps. If you

use it for the lesson, note that the file paths might be different than in your

environment and you might need to update the sample file.

To create the DAD file for composing an XML document:

 1. From the dxx_install/samples/db2xml/xml directory, open a text editor and

create a file called getstart_xcollection.dad.

 2. Create the DAD header, using the following text:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

Change dxx_install to the directory where DB2 XML Extender was installed.

 3. Insert the <DAD></DAD> tags. All other tags are located inside these tags.

 4. Specify <validation> </validation> tags to indicate whether the XML

Extender validates the XML document structure when you insert a DTD into

the DTD repository table. This lesson does not require a DTD and the value is

NO.

<validation>NO</validation>

The value of the <validation> tags can be mixed case.

 5. Use the <Xcollection></Xcollection> tags to define the access and storage

method as XML collection. The access and storage methods define that the

XML data is stored in a collection of DB2 UDB tables.

<Xcollection>

</Xcollection>

 6. After the <Xcollection> tag, provide an SQL statement to specify the tables

and columns used for the XML collection. This method is called SQL mapping

and is one of two ways to map relational data to the XML document

structure. Enter the following statement:

<Xcollection

<SQL_stmt>

 SELECT o.order_key, customer_name, customer_email, p.part_key, color,

 quantity, price, tax, ship_id, date, mode from order_tab o, part_tab p,

 table (select substr(char(timestamp(db2xml.generate_unique())),16)

as ship_id, date, mode, part_key from ship_tab) s

 WHERE o.order_key = 1 and

 p.price > 20000 and

 p.order_key = o.order_key and

 s.part_key = p.part_key

 ORDER BY order_key, part_key, ship_id

</SQL_stmt>

</Xcollection>

This SQL statement uses the following guidelines when using SQL mapping.

See Figure 3 on page 23 for the document structure.

Chapter 1. Introduction 25

v Columns are specified in top-down order, by the hierarchy of the XML

document structure. For example, the columns for the order and customer

elements are first, those for the part element are second, and those for the

shipment are third.

v The columns for a repeating section, or nonrepeating section, of the

template that requires data from the database are grouped together. Each

group has an object ID column: ORDER_KEY, PART_KEY, and SHIP_ID.

v The object ID column is the first column in each group. For example,

O.ORDER_KEY precedes the columns related to the key attribute and

p.PART_KEY precedes the columns for the Part element.

v The SHIP_TAB table does not have a single key conditional column, and

therefore, the generate_unique user-defined function is used to generate the

SHIP_ID column.

v The object ID columns are then listed in top-down order in an ORDER BY

statement. The columns in ORDER BY are not qualified by any schema and

table name, and they match the column names in the SELECT clause.
 7. Add the following prolog information to be used in the composed XML

document:

<prolog>?xml version="1.0"?</prolog>

This exact text is required for all DAD files.

 8. Add the <doctype></doctype> tags to be used in the XML document you are

composing. The <doctype> tag contains the path to the DTD stored on the

client.

<doctype>!DOCTYPE Order SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd"</doctype>

 9. Define the root element of the XML document using the

<root_node></root_node> tags. Inside the root_node, specify the elements

and attributes that make up the XML document.

10. Map the XML document structure to the DB2 UDB relational table structure

using the following three types of nodes:

element_node

Specifies the element in the XML document. Element_nodes can have

child element_nodes.

attribute_node

Specifies the attribute of an element in the XML document.

text_node

Specifies the text content of the element and the column data in a

relational table for bottom-level element_nodes.
Figure 3 on page 23 shows the hierarchical structure of the XML document

and the DB2 UDB table columns, and indicates what kinds of nodes are used.

The shaded boxes indicate the DB2 UDB table column names from which the

data will be extracted to compose the XML document.

To add each type of node, one type at a time:

a. Define an <element_node> tag for each element in the XML document.

<root_node>

<element_node name="Order">

 <element_node name="Customer">

 <element_node name="Name">

 </element_node>

 <element_node name="Email">

 </element_node>

 </element_node>

26 XML Extender Administration and Programming

<element_node name="Part">

 <element_node name="key">

 </element_node>

 <element_node name="Quantity">

 </element_node>

 <element_node name="ExtendedPrice">

 </element_node>

 <element_node name="Tax">

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 </element_node>

 <element_node name="ShipMode">

 </element_node>

 </element_node> <!-- end Shipment -->

 </element_node> <!-- end Part -->

</element_node> <!-- end Order -->

</root_node>

The <Shipment> child element has an attribute of multi_occurrence=YES.

This attribute is used for elements without an attribute, that are repeated

in the document. The <Part> element does not use the multi-occurrence

attribute because it has an attribute of color, which makes it unique.

b. Define an <attribute_node> tag for each attribute in your XML document.

These attributes are nested in the appropriate element_node. The added

attribute_nodes are highlighted in bold:

<root_node>

<element_node name="Order">

 <attribute_node name="key">

 </attribute_node>

 <element_node name="Customer">

 <element_node name="Name">

 </element_node>

 <element_node names"Email">

 </element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="color">

 </attribute_node>

 <element_node name="key">

 </element_node>

 <element_node name="Quantity">

 </element_node>

...

 </element_node> <!-- end Part -->

</element_node> <!-- end Order -->

</root_node>

c. For each bottom-level element_node, define <text_node> tags to indicate

that the XML element contains character data to be extracted from DB2

UDB when the document is composed.

<root_node>

<element_node name="Order">

 <attribute_node name="key">

 </attribute_node>

 <element_node name="Customer">

 <element_node name="Name">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="Email">

 <text_node>

 </text_node>

Chapter 1. Introduction 27

</element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="color">

 </attribute_node>

 <element_node name="key">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="Quantity">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="ExtendedPrice">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="Tax">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 <text_node>

 </text_node>

 </element_node>

 <element_node name="ShipMode">

 <text_node>

 </text_node>

 </element_node>

 </element_node> <!-- end Shipment -->

 </element_node> <!-- end Part -->

</element_node> <!-- end Order -->

</root_node>

d. For each bottom-level element_node, define a <column/> tag. These tags

specify from which column to extract data when composing the XML

document and are typically inside the <attribute_node> or the <text_node>

tags. The columns defined in the <column/> tag must be in the

<SQL_stmt> SELECT clause.

<root_node>

<element_node name="Order">

 <attribute_node name="key">

 <column name="order_key"/>

 </attribute_node>

 <element_node name="Customer">

 <element_node name="Name">

 <text_node>

 <column name="customer_name"/>

 </text_node>

 </element_node>

 <element_node name="Email">

 <text_node>

 <column name="customer_email"/>

 </text_node>

 </element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="color">

 <column name="color"/>

 </attribute_node>

 <element_node name="key">

 <text_node>

 <column name="part_key"/>

 </text_node>

 <element_node name="Quantity">

28 XML Extender Administration and Programming

<text_node>

 <column name="quantity"/>

 </text_node>

 </element_node>

 <element_node name="ExtendedPrice">

 <text_node>

 <column name="price"/>

 </text_node>

 </element_node>

 <element_node name="Tax">

 <text_node>

 <column name="tax"/>

 </text_node>

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 <text_node>

 <column name="date"/>

 </text_node>

 </element_node>

 <element_node name="ShipMode">

 <text_node>

 <column name="mode"/>

 </text_node>

 </element_node>

 </element_node> <!-- end Shipment -->

 </element_node> <!-- end Part -->

</element_node> <!-- end Order -->

</root_node>

11. Ensure that you have the necessary end tags:

v An ending </root_node> tag after the last </element_node> tag

v An ending </Xcollection> tag after the </root_node> tag

v An ending </DAD> tag after the </Xcollection> tag
12. Save the file as getstart_xcollection.dad.

You can compare the file that you created with the sample file

dxx_install/samples/db2xml/dad/getstart_xcollection.dad . This file is a working

copy of the DAD file required to compose the XML document. The sample file

contains location paths and file path names that might need to be changed to

match your environment to be run successfully.

In your application, if you will use an XML collection frequently to compose

documents, you can define a collection name by enabling the collection. Enabling

the collection registers it in the XML_USAGE table and helps improve performance

when you specify the collection name (rather than the DAD file name) when

running stored procedures. In these lessons, you do not enable the collection.

 Composing the XML document:

 In this step, you use the dxxGenXML() stored procedure to compose the XML

document specified by the DAD file. This stored procedure returns the document

as an XMLVARCHAR UDT.

To compose the XML document:

1. Use one of the following methods to call the dxxGenXML stored procedure:

Command line: Enter the following command:

getstart_stp.cmd

TSO: Submit the dxxgstp JCL job.

Chapter 1. Introduction 29

The stored procedure composes the XML document and stores it in the

RESULT_TAB table.

You can see samples of stored procedures that can be used in this step in the

following files:

v dxx_install/samples/db2xml/c/tests2x.sqc shows how to call the stored

procedure using embedded SQL and generates the tests2x executable file,

which is used by the getstart_stp.cmd.

v dxx_install/samples/db2xml/cli/sql2xml.c dxxsamples/cli/sql2xml.cshows

how to call the stored procedure using the CLI.
2. Export the XML document from the table to a file using one of the following

methods to call the XML Extender retrieval function, Content():

Command line:

v Enter the following commands:

DB2 SELECT DB2XML.Content(DB2XML.xmlVarchar(doc),

 ’dxx_install/samplesdb2xml/cmd/xml/getstart.xml

 ’) FROM RESULT_TAB

v Run the following command file to export the file:

getstart_exportXML.cmd

TSO: Submit the DXXGEXML JCL job.

Tip: This step teaches you how to generate one or more composed XML

documents using DB2 UDB stored procedure’s result set feature. Using a result set

allows you to fetch multiple rows to generate more than one document. When you

generate each document, you can export it to a file. This method is the simplest

way to demonstrate using result sets. For more efficient ways of fetching data, see

the CLI examples in dxx_install/samples/db2xml/cli.

 Transforming an XML document into an HTML file:

 To show the data from the XML document in a browser, you must transform the

XML document into an HTML file by using a stylesheet and the

XSLTransformToFile function.

Use the following steps to transform to an HTML file:

1. Generate a stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <head/>

 <body>

 ...

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

2. For each element, create a tag using the following format:

<xsl:for-each select="xxxxxx">

This tag will be used for transforming instructions. Create a tag for each

element of the hierarchy of the XML document. For example:

30 XML Extender Administration and Programming

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <head/>

 <body>

 <xsl:for-each select="Order">

 <xsl:for-each select="Customer">

 <xsl:for-each select="Name | Email">

 </xsl:for-each>

 </xsl:for-each>

<xsl:for-each select="Part">

 <xsl:for-each select="key | Quantity | ExtendedPrice | Tax">

 </xsl:for-each>

 <xsl:for-each select="Shipment">

 <xsl:for-each select="ShipDate | ShipMode">

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

3. To format the HTML file, use a list that shows the hierarchy of the XML

elements to make the data more readable. Create some additional text elements

to describe the data. For example, your stylesheet file might look like this:

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <head/>

 <body>

 <ol style="list-style:decimal outside">

 <xsl:for-each select="Order">

 Orderkey : <xsl:value-of-select="@key"/

 <xsl:for-each select="Customer">

 Customer

 <xsl:for-each select="Name | Email">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>, </xsl:text>

 </xsl:for-each>

 </xsl:for-each>

 <ol type="A">

 <xsl:for-each select="Part">

 Parts

 Color : <xsl:value-of select="@color"/>

 <xsl:text>, </xsl:text>

 <xsl:for-each select="key | Quantity | ExtendedPrice | Tax">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

Chapter 1. Introduction 31

<xsl:text>, </xsl:text>

 </xsl:for-each>

 <ol type="a">

 <xsl:for-each select="Shipment">

 Shipment

 <xsl:for-each select="ShipDate | ShipMode">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>, </xsl:text>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

4. Use Xpath to edit the <xsl:value-of select=″xxx″> tags with data from the XML

document.

The element tags are <xsl:value-of select″.″>, where the period (″.″) is used to

get data from normal elements.

The attribute tags are <xsl:value-of select=″@attributname″> , where the

ampersand (@) that is added by the attribute name will extract the value of the

attribute. You can use the <xsl:value-of select=″name()″> to get the name of the

XML tag.

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <head/>

 <body>

 <ol style="list-style:decimal outside">

 <xsl:for-each select="Order">

 Orderkey : <xsl:value-of-select="@key"/

 <xsl:for-each select="Customer">

 Customer

 <xsl:for-each select="Name | Email">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>, </xsl:text>

 </xsl:for-each>

 </xsl:for-each>

 <ol type="A">

 <xsl:for-each select="Part">

 Parts

 Color : <xsl:value-of select="@color"/>

 <xsl:text>, </xsl:text>

32 XML Extender Administration and Programming

<xsl:for-each select="key | Quantity | ExtendedPrice | Tax">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>, </xsl:text>

 </xsl:for-each>

 <ol type="a">

 <xsl:for-each select="Shipment">

 Shipment

 <xsl:for-each select="ShipDate | ShipMode">

 <xsl:value-of select="name()"/>

 <xsl:text> : </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>, </xsl:text>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

5. Save the stylesheet.

6. Create the HTML file in one of the following ways:

v Use the XSLTransformToFile:

SELECT XSLTransformToFile(CAST(doc AS CLOB(4k)),

 ’dxx_install\samples\xslt\getstart.xsl’,

 ’dxx_install\samples\html\getstart.html’)

 FROM RESULT_TAB

v Use the following command:

Getstart_xslt.cmd

The output file can be written only to a file system that is accessible to the DB2

UDB server.

 Cleaning up the tutorial environment:

 If you want to clean up the lesson environment, you can run one of the provided

scripts or enter the commands from the command line to:

v Disable the XML column, ORDER.

v Drop tables created in the lessons.

v Delete the DTD from the DTD repository table.

They do not disable or drop the SALES_DB database; the database is still available

for use with XML Extender. You might receive error messages if you have not

completed both lessons in this chapter. You can ignore these errors.

To clean up the tutorial environment:

Run the cleanup command file, using one of the following methods:

v Command line: Enter the following command:

Chapter 1. Introduction 33

getstart_clean.cmd

TSO: Submit the dxxgclen JCL job.

v If you want to disable the server, you can run the following XML Extender

command from the command line:

dxxadm disable_server -a V81A

This command drops the administration control tables DTD_REF and

XML_USAGE, and removes the user-defined types and functions provided by

XML Extender.

 Related concepts:

v “Introduction to XML Extender” on page 3

v “Lesson: Storing an XML document in an XML column” on page 8

v “XML Extender tutorial lessons” on page 7

34 XML Extender Administration and Programming

Part 2. Administration

This part describes how to perform administration tasks for the XML Extender.

© Copyright IBM Corp. 1999, 2004 35

36 XML Extender Administration and Programming

Chapter 2. Administration

Administration tools for XML Extender

The XML Extender administration tools help you enable your database and table

columns for XML, and map XML data to DB2® relational structures. The XML

Extender provides the following command line tool and programming interfaces

for administration tasks that you can use.

XML Extender provides a command line tool and programming interfaces for

administration tasks.

v The dxxadm command can be run from UNIX® System Services (USS) or from

the TSO command line.

v JCL based on samples provided in the SDXXJCL data set

XML Extender also provides the following tools to complete administration tasks:

v The XML Extender administration wizard provides a graphical user interface for

administration tasks.

v The XML Extender administration stored procedures allow you to invoke

administration commands from a program.

Preparing to administer XML Extender

 To run XML Extender, you need to install the following software.

Required software: The XML Extender requires DB2® Universal Database for z/OS

Version 8.

Optional software:

v For structural text search, the DB2 Universal Database Text Extender Version 8,

which is available with DB2 Universal Database Version 8

v For XML Extender administration wizard:

– DB2 Universal Database Java Database Connectivity (JDBC)

– JDK 1.1.7 or JRE 1.1.1, which is available with the DB2 UDB Control Center

– JFC 1.1 with Swing 1.1, which is available with the DB2 UDB Control Center

Before you install XML Extender, you must complete following tasks:

v View the set up instructions.

v Create a database for XML access.

To perform administration tasks using XML Extender, you must have DB2ADM

authority.

Migrating XML Extender from Version 7 to Version 8

If you use XML Extender Version 7, you must migrate each serverthat is enabled

for XML Extender before you use an existing XML-enabled database with XML

Extender Version 8.

© Copyright IBM Corp. 1999, 2004 37

The migration program executes various steps depending on the base level of XML

Extender that you have. Steps that the migration program might execute are:

v Create XMLDBCLOB user-defined types (UDTs) and user-defined functions

(UDFs) for use with Unicode and DBCS databases

v Create new user-defined functions for Schema and DTD validation and XSLT

function.

v Create new stored procedures (dxxGenXMLCLOB and dxxRetrieveXMLCLOB)

that return CLOBs.

v Drop and re-create the user-defined functions UDFs that allow you to use the

parallel capability for the scalar UDFs.

When calling stored procedures, use a period (.) instead of an explanation point (!)

in the procedure name. For example, use db2xml.dxxEnableColumn instead of

db2xml!dxxEnableColumn.

Procedure:

To migrate an XML enabled server and XML enabled columns:

1. Install DB2 UDB XML Extender Version 8.1.

2. Re-bind the XML Extender packages by running DXXRBIND.

3. Update the UDFs and stored procedures by running DXXMIGRA.

To manually migrate columns enabled for XML extender:

1. Retrieve the DAD file that is used to enable a column from the

DB2XML.XML_USAGE table before you disable any columns.

XML Extender administration planning

 The XML Extender provides several methods for administration: XML Extender

administration command and XML Extender stored procedures. You can also use the

XML Extender administration wizard, if you have XML Extender installed on a

client workstation.

v The administration command, dxxadm, provides subcommands for the various

administration tasks.

v Administration tasks can be executed by calling stored procedures for

administration from a program.

v The XML Extender administration wizard guides you through the administration

tasks. You can use it from a client workstation to perform these tasks.

When you plan an application that uses XML documents, you first decide whether

you will:

v Compose XML documents from data in the database.

v Store existing XML documents. If you will store XML documents, you must also

decide if you want them to be stored as intact XML documents in a column or

decomposed into regular DB2® data.

After you make this decision, you can then decide:

v Whether to validate your XML documents

v Whether to index XML column data for fast search and retrieval

v How to map the structure of the XML document to DB2 UDB relational tables

38 XML Extender Administration and Programming

Setting up the administration wizard

 The XML Extender administration tasks consist of enabling your database columns

for XML and mapping XML data to DB2 UDB relational structures. You can use

the XML Extender wizard to complete these administration tasks. This chapter

explains how you can set up and invoke the administration wizard. You can

invoke the wizard either through the Windows Start menu or from a command

line prompt.

 Prerequisites:

 Before you set up the wizard, you must install and configure the administration

wizard as explained in the README file for your operating system. You must

include the required class files in your CLASSPATH environment variable.

With the exception of the line breaks, ensure that the CLASSPATH environment

variable looks similar to the following example:

.;C:\java\db2java.zip;C:\java\runtime.zip;C:\java\sqlj.zip;

C:\dxx_installtools\dxxadmin.jar;C:\dxx_install\bin\dxxadmin.cmd;

C:\dxx_installtools\html\dxxahelp*.htm;C:\java\jdk\lib\classes.zip;

C:\java\swingall.jar

Where dxx_install is the install directory.

 Procedure:

 To set up the XML Extender Administration wizard:

1. Invoke the wizard using the JDK. You can use either the Java Development Kit

or the Java Runtime Environment (JRE).

v To use the JRE, enter:

jre -classpath classpath com.ibm.dxx.admin.Admin

v To use the JDK, enter:

java -classpath classpath com.ibm.dxx.admin.Admin

Where classpath specifies the %CLASSPATH% environment variable that

specifies where the administration wizard class files are located. When using

this option, your system CLASSPATH variable must point to the

dxx_install/tools directory, which contains the following files: dxxadmin.jar,

xml4j.jar, and db2java.zip. For example:

java -classpath %CLASSPATH% com.ibm.dxx.admin.Admin

classpath can also specify an override of the %CLASSPATH% environment

variable with pointers to files in the dxx_install/dxxadmin directory, from

which you are running the XML Extender administration wizard. For example:

java -classpath dxxadmin.jar;xml4j.jar;db2java.zip com.ibm.dxx.admin.Admin

 url=jdbc:db2:mydb2 userid=db2xml password=db2xml

 driver=COM.ibm.db2.jdbc.app.DB2Driver

2. From the Logon window, log on to the database that you want to use to work

with XML data.

3. In the Address field, type the fully-qualified JDBC URL to the data source to

which you are connecting. The address has the following syntax:

jdbc:db2:database_name

Where database_name is the database to which you are connecting and storing

XML documents.

Chapter 2. Administration 39

For example:

jdbc:db2:sales_db

4. In the User ID and Password fields, type or verify the DB2 UDB user ID and

password for the database to which you are connecting.

5. In the JDBC Driver field, verify the JDBC driver name for the specified address

using the following values:

COM.ibm.db2.jdbc.app.DB2DRIVER

6. Click Finish. Invoke the wizard and advance to the LaunchPad window.

After you complete this procedure you can invoke the wizard in the LaunchPad

window. With the wizard, you can perform the following functions:

v Enable a server.

v Add a DTD to the DTD repository.

v Work with XML columns.

v Work with XML collections.

Access and storage methods

 The XML Extender provides two access and storage methods to use DB2® as an

XML repository: XML column and XML collection. You need to decide which of

these methods best matches your application’s needs for accessing and

manipulating XML data.

XML column

Stores and retrieves entire XML documents as DB2 UDB column data. The

XML data is represented by an XML column.

XML collection

Decomposes XML documents into a collection of relational tables or

composes XML documents from a collection of relational tables.

The nature of your application determines which access and storage method is

most suitable, and how to structure your XML data.

You use the DAD file to associate XML data with DB2 UDB tables through these

two access and storage methods. Figure 4 on page 41 shows how the DAD

specifies the access and storage methods.

40 XML Extender Administration and Programming

The DAD file defines the location of key files like the DTD, and specifies how the

XML document structure relates to your DB2 UDB data. Most important, it defines

the access and storage method that you use in your application.

 Related concepts:

v “When to use the XML column method” on page 41

v “When to use the XML collection method” on page 42

 Related reference:

v “Storage functions in XML Extender overview” on page 138

When to use the XML column method

Use XML columns in any of the following situations:

v The XML documents already exist or come from an external source and you

prefer to store the documents in the native XML format. You want to store them

in DB2® for integrity, archival, and auditing purposes.

v The XML documents are read frequently, but not updated.

v You want to use file name data types to store the XML documents (external to

DB2 UDB) in the local or remote file system and use DB2 UDB for management

and search operations.

v You need to perform range searches based on the values of XML elements or

attributes, and you know what elements or attributes will frequently be used in

the search arguments.

v The documents have elements with large text blocks and you want to use the

DB2 UDB Text Extender for structural text search while keeping the entire

documents intact.

<?xml?>
<!DOCTYPE…>

<Order key="1">

<?xml?>
<!DOCTYPE…>

<Order key="1">

…
…

…
…

…
…

</Order>

</Order>

XML document

XML document

DB2

DB2

DAD

DAD

<Xcolumn>
<table>
<column>
<column>
<column>

</table>
</Xcolumn>

<Xcollection>
<table>
<column>

</table>

<table>
<column>

</table>
</Xcollection>

Figure 4. The DAD file maps the XML document structure to a DB2 UDB relational data

structure and specifies the access and storage method.

Chapter 2. Administration 41

When to use the XML collection method

Use XML collections in any of the following situations:

v You have data in your existing relational tables and you want to compose XML

documents based on a certain DTD.

v You have XML documents that need to be stored with collections of data that

map well to relational tables.

v You want to create different views of your relational data using different

mapping schemes.

v You have XML documents that come from other data sources. You care about the

data but not the tags, and want to store pure data in your database and you

want the flexibility to decide whether to store the data in existing tables or in

new tables.

Planning for XML columns

Before you begin working with the XML Extender to store your documents, you

need to understand the structure of the XML document so that you can determine

how to index elements and attributes in the document. When planning how to

index the document, you need to determine:

v The XML user-defined type in which you will store the XML document

v The XML elements and attributes that your application will frequently search, so

that their content can be stored in side tables and indexed to improve

performance

v Whether to validate XML documents in the column with a DTD

v The structure of the side tables and how they will be indexed

XML data types for the XML columns

The XML Extender provides XML user defined types that you use to define a

column to hold XML documents. These data types are described in Table 6.

 Table 6. The XML Extender UDTs

User-defined type column Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML

document as a VARCHAR

data type within DB2. Used

for small documents that are

stored in DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML

document as a CLOB data

type within DB2. Used for

large documents that are

stored in DB2.

XMLFILE VARCHAR(512) Stores the file name of an

XML document in DB2, and

stores the XML document in

a file local to the DB2®

server. Used for documents

that are stored outside DB2.

42 XML Extender Administration and Programming

||

|||

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|

Elements and attributes to index for XML columns

When you understand the XML document structure and the needs of your

application, you can determine which elements and attributes will be searched or

extracted most frequently, or those that will be the most expensive to query. The

DAD file for an XML column can map the location paths of each element and

attribute to relational tables (side tables) that contain these objects. The side tables

are then indexed.

For example, Table 7 shows an example of types of data and location paths of

elements and attributes from the Getting Started scenario for XML columns. The

data was specified as information to be frequently searched and the location paths

point to elements and attributes that contain the data. The DAD file can map these

location paths to side tables.

 Table 7. Elements and attributes to be searched

Data Location path

order key /Order/@key

customer /Order/Customer/Name

price /Order/Part/ExtendedPrice

shipping date /Order/Part/Shipment/ShipDate

The DAD file for XML columns

For XML columns, the DAD file primarily specifies how documents that are stored

in an XML column are to be indexed. The DAD file specifies a DTD to use for

validating documents that are inserted into the XML column. The DAD file has a

data type of CLOB. This file can be up to 100 KB.

The DAD file for XML columns provides a map of any XML data that is to be

stored in side tables for indexing.

To specify the XML column access and storage method, you use the <Xcolumn>

tag in the DAD file. The <Xcolumn> tag specifies that the XML data is to be stored

and retrieved as entire XML documents in DB2 UDB columns that are enabled for

XML data.

An XML-enabled column is of the XML Extender’s UDT. Applications can include

the column in any user table. You access the XML column data mainly through SQL

statements and the XML Extender’s UDFs.

 Related concepts:

v “Planning side tables” on page 58

Planning for XML collections

When planning for XML collections, you have different considerations for

composing documents from DB2® data, decomposing XML document into DB2

data, or both. The following sections address planning issues for XML collections,

and address composition and decomposition considerations.

Chapter 2. Administration 43

Validation

After you choose an access and storage method, you can determine whether to

validate your data. You validate XML data using a DTD or a schema. Using a DTD

or schema to validate ensures that the XML document is valid.

To validate using a DTD, you might need to have a DTD in the XML Extender

repository.

Important: Make the decision whether to validate XML data before you insert

XML data into DB2. The XML Extender does not validate data that is already

inserted into DB2.

Considerations:

v You can use only one DTD for composition.

v You can use multiple schemas for composition.

v If you do not choose to validate a document, the DTD specified by the XML

document is not processed. It is important that DTDs be processed to resolve

entities and attribute defaults even when processing document fragments that

cannot be validated.

The DAD file for XML collections

For XML collections, the DAD file maps the structure of the XML document to the

DB2 UDB tables from which you compose the document, or where you decompose

the document.

For example, if you have an element called <Tax> in your XML document, you

might need to map <Tax> to a column called TAX. You define the relationship

between the XML data and the relational data in the DAD.

You specify the DAD file name when you enable a collection, or when you use the

DAD file in XML collection stored procedures. If you choose to validate XML

documents with a DTD, the DAD file can be associated with that DTD. When used

as the input parameter of the XML Extender stored procedures, the DAD file has a

data type of CLOB. This file can be up to 100 KB.

To specify the XML collection access and storage method, you use the tag in the

DAD file. The <Xcollection> tag specifies that the XML data is either to be

decomposed from XML documents into a collection of relational tables, or to be

composed into XML documents from a collection of relational tables.

An XML collection is a virtual name for a set of relational tables that contains XML

data. Applications can enable an XML collection of any user tables. These user

tables can be existing tables of legacy business data or tables that the XML

Extender recently created.

The DAD file defines the XML document tree structure, using the following kinds

of nodes:

root_node

Specifies the root element of the document.

element_node

Identifies an element, which can be the root element or a child element.

text_node

Represents the CDATA text of an element.

44 XML Extender Administration and Programming

|
|
|

|

attribute_node

Represents an attribute of an element.

Figure 5 shows a fragment of the mapping that is used in a DAD file. The nodes

map the XML document content to table columns in a relational table.

In the above figure, the first two columns in the SQL statement have elements and

attributes mapped to them.

The XML Extender also supports processing instructions for stylesheets, using the

<stylesheet> element. The <stylesheet> element must be inside the root node of the

DAD file, with the doctype and prolog defined for the XML document. For

example:

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet type="text/css"

href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

 ...

<Xcollection>

<SQL_stmt>

 ...

</SQL_stmt>

<prolog>?xml version="1.0"?</prolog>

<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/db2xml/dtd/

getstart.dtd"</doctype><root_node>

 <element_node name="Order"> --> Identifies the element <Order>

 <attribute_node name="key"> --> Identifies the attribute "key"

 <column name="order_key"/> --> Defines the name of the column,

 "order_key", to which the element

 and attribute are mapped

 </attribute_node>

 <element_node name="Customer"> --> Identifies a child element of

 <Order> as <Customer>

 <text_node> --> Specifies the CDATA text for

 the element<Customer>

 <column name="customer"> --> Defines the name of the column,

 "customer", to which the child

 element is mapped

 </text_node>

 </element_node>

 ...

 </element_node>

 ...

<root_node>

</Xcollection>

</DAD>

Figure 5. Node definitions in a DAD file for an XML collection

Chapter 2. Administration 45

You can use the Websphere Studio Application Developer to create and update the

DAD file. The <stylesheet> element is not currently supported by the XML

Extender Administration wizard.

Mapping schemes for XML collections

If you are using an XML collection, you must select a mapping scheme that defines

how XML data is represented in a relational database. Because XML collections

must match a hierarchical structure that is used in XML documents with a

relational structure, you should understand how the two structures compare.

Figure 6 shows how the hierarchical structure can be mapped to relational table

columns.

 The XML Extender uses the mapping scheme when composing or decomposing

XML documents that are located in multiple relational tables. The XML Extender

provides a wizard that assists you with creating the DAD file. However, before

you create the DAD file, you must consider how your XML data is mapped to the

XML collection.

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure 6. XML document structure mapped to relational table columns

46 XML Extender Administration and Programming

Types of mapping schemes

The mapping scheme is specified in the <Xcollection> element in the DAD file. The

XML Extender provides two types of mapping schemes: SQL mapping and relational

database (RDB_node) mapping.

SQL mapping

Allows direct mapping from relational data to XML documents through a

single SQL statement. SQL mapping is used for composition; it is not used

for decomposition. SQL mapping is defined with the SQL_stmt element in

the DAD file. The content of the SQL_stmt element is a valid SQL

statement. The SQL_stmt element maps the columns in the SELECT clause

to XML elements or attributes that are used in the XML document. The

column names in the SQL statement’s SELECT clause are used to define

the value of an attribute_node or the content of text_node. The FROM

clause defines the tables containing the data; the WHERE clause specifies

the join and search condition.

 The SQL mapping gives DB2 UDB for z/Os users the power to map the

data using SQL. When using SQL mapping, you must be able to join all

tables in one SELECT statement to form a query. If one SQL statement is

not sufficient, consider using RDB_node mapping. To tie all tables together,

the primary key and foreign key relationship is recommended among these

tables.

RDB_node mapping

Defines the location of the content of an XML element or the value of an

XML attribute so that the XML Extender can determine where to store or

retrieve the XML data.

 This method uses the XML Extender-provided RDB_node, which contains

one or more node definitions for tables, optional columns, and optional

conditions. The tables and columns are used to define how the XML data

is to be stored in the database. The condition specifies the criteria for

selecting XML data or the way to join the XML collection tables.

 To define a mapping scheme, you create a DAD with an <Xcollection> element.

Figure 7 on page 48 shows a fragment of a sample DAD file with an XML

collection SQL mapping that composes a set of XML documents from data in three

relational tables.

Chapter 2. Administration 47

The XML Extender provides several stored procedures that manage data in an

XML collection. These stored procedures support both types of mapping, but

require that the DAD file follow the rules that are described in “Mapping scheme

requirements.”

Mapping scheme requirements

The following sections describe requirements for each type of the XML collection

mapping schemes.

Mapping scheme requirements for SQL mapping

 In this mapping scheme, you must specify the SQL_stmt element in the

DAD <Xcollection> element. The SQL_stmt should contain a single SQL

statement that can join multiple relational tables with the query predicate.

In addition, the following clauses are required:

v SELECT clause

– Ensure that the name of the column is unique. If two tables have the

same column name, use the AS keyword to create an alias name for

one of them.

– Group the columns of the same table together, and use the logical

hierarchical level of the relational tables. This means group the tables

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

 <dtdid>dxx_install/samples/db2xml/dtd/dad/

 getstart.dtd</dtdid>

 <validation>YES</validation>

 <Xcollection>

 <SQL_stmt>

 SELECT o.order_key, customer, p.part_key, quantity, price, tax, date,

 ship_id, mode, comment

 FROM order_tab o, part_tab p,

 table(select

 db2xml.generate_unique()

 as ship_id, date, node, from ship_tab) shipid

 WHERE p.price > 2500.00 and s.date > "1996-06-01" AND

 p.order_key = o.order_key and s.part_key = p.part_key

 </SQL_stmt>

 <prolog>?xml version="1.0"?</prolog>

 <doctype>!DOCTYPE DAD SYSTEM "dxx_install

 /samples/db2xml/dtd/getstart.dtd"</doctype>

 <root_node>

 <element_node name="Order">

 <attribute_node name="key">

 <column_name="order_key"/>

 </attribute_node>

 <element_node name="Customer">

 <text_node>

 <column name="customer"/>

 </text_node>

 <element_node>

 ...

 </element_node><!-end Part->

 </element_node><!-end Order->

 </root_node>

 </Xcollection>

</DAD>

Figure 7. SQL mapping scheme

48 XML Extender Administration and Programming

according to the level of importance according to how the tables map

to the hierarchical structure of your XML document. In the SELECT

clause, the columns of the higher-level tables should proceed the

columns of lower-level tables. The following example demonstrates

the hierarchical relationship among tables:

SELECT o.order_key, customer, p.part_key, quantity, price, tax,

 ship_id, date, mode

In this example, order_key and customer from table ORDER_TAB

have the highest relational level because they are higher on the

hierarchical tree of the XML document. The ship_id, date, and mode

from table SHIP_TAB are at the lowest relational level.

– Use a single-column candidate key to begin each level. If such a key

is not available in a table, the query must generate one for that table

using a table expression and the user-defined function,

generate_unique(). In the above example, the o.order_key is the

primary key for ORDER_TAB, and the part_key is the primary key of

PART_TAB. They appear at the beginning of their own group of

columns that are to be selected. Because the SHIP_TAB table does not

have a primary key, one must be generated, in this case, ship_id. This

primary key is listed as the first column for the SHIP_TAB table

group. Use the FROM clause to generate the primary key column, as

shown in the following example.
v FROM clause

– Use a table expression and the user-defined function,

generate_unique(), to generate a single key for tables that do not have

a primary single key. For example:

FROM order_tab as o, part_tab as p,

 table(select db2xml.generate_unique() as

 ship_id, date, mode from ship_tab) as s

In this example, a single column candidate key is generated with the

function, generate_unique() and given an alias named ship_id.

– Use an alias name when needed to make a column distinct. For

example, you could use o for ORDER_TAB, p for PART_TAB, and s

for SHIP_TAB.
v WHERE clause

– Specify a primary and foreign key relationship as the join condition

that ties tables in the collection together. For example:

WHERE p.price > 2500.00 AND s.date > "2003-06-01" AND

 p.order_key = o.order_key AND s.part_key = p.part_key

– Specify any other search condition in the predicate. Any valid

predicate can be used.
v ORDER BY clause

– Define the ORDER BY clause at the end of the SQL_stmt element.

– Ensure that the column names match the column names in the

SELECT clause.

– Specify the column names or identifiers that uniquely identify entities

in the entity-relationship design of the database. An identifier can be

generated using a table expression and the function generate_unique,

or a user-defined function (UDF).

– Maintain the top-down order of the hierarchy of the entities. The

column specified in the ORDER BY clause must be the first column

Chapter 2. Administration 49

listed for each entity. Keeping the order ensures that the XML

documents to be generated do not contain incorrect duplicates.

– Do not qualify the columns in ORDER BY by any schema or table

name.

Although the SQL_stmt element has the preceding requirements, it is

powerful because you can specify any predicate in your WHERE clause if

the expression in the predicate uses the columns in the tables.

Mapping scheme requirements for RDB_node mapping

 When using this mapping method, do not use the element SQL_stmt in the

<Xcollection> element of the DAD file. Instead, use the RDB_node element

as a child of the top element_node and of each attribute_node and

text_node.

 There are no ordering restrictions on predicates of the root node condition.

v RDB_node for the top element_node

The top element_node in the DAD file represents the root element of the

XML document. Specify an RDB_node for the top element_node based

on these requirements:

– Line ending characters are allowed in condition statements.

– Condition elements can reference a column name an unlimited

number of times.

– Specify all tables that are associated with the XML documents. For

example, the following mapping specifies three tables in the

RDB_node of the element_node <Order>, which is the top

element_node:

<element_node name="Order">

 <RDB_node>

 <table name="order_tab"/>

 <table name="part_tab"/>

 <table name="ship_tab"/>

 <condition>

 order_tab.order_key = part_tab.order_key AND

 part_tab.part_key = ship_tab.part_key

 </condition>

 </RDB_node>

The condition element can be empty or missing if there is only one

table in the collection.

– If you are decomposing, or are enabling the XML collection specified

by the DAD file, specify a primary key for each table. The primary

key can consist of a single column or multiple columns, called a

composite key. The primary key is specified by adding an attribute

key to the table element of the RDB_node. When a composite key is

supplied, the key attribute is specified by the names of key columns

separated by a space. For example:

<table name="part_tab" key="part_key price"/>

The information specified for decomposition is ignored when

composing a document.

– Use the orderBy attribute to recompose XML documents that contain

elements or attributes with multiple occurrences back to their original

structure. This attribute allows you to specify the name of a column

50 XML Extender Administration and Programming

that will be the key used to preserve the order of the document. The

orderBy attribute is part of the table element in the DAD file, and it is

an optional attribute.
v RDB_node for each attribute_node and text_node

You need to specify an RDB_node for each attribute_node and

text_node, that tells the stored procedure from which table, which

column, and under which query condition to get the data. You must

specify the table and column values; the condition value is optional.

– Specify the name of the table that contains the column data. The table

name must be included in the RDB_node of the top element_node. In

this example, for text_node of element <Price>, the table is specified

as PART_TAB.

<element_node name="Price">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="price"/>

 <condition>

 price > 2500.00

 </condition>

 </RDB_node>

 </text_node>

</element_node>

– Specify the name of the column that contains the data for the element

text. In the previous example, the column is specified as PRICE.

– Specify a condition if you want XML documents to be generated

using the query condition. Allowable syntax for <condition> is as

follows:

- columnname

- operator

- literal

In the example above, the condition is specified as price > 2500.00.

Only the data that meets the condition is in the generated XML

documents. The condition must be a valid WHERE clause.

– If you are decomposing a document, or are enabling the XML

collection specified by the DAD file, specify the column type for each

attribute_node and text_node. This ensures the correct data type for

each column when new tables are created when an XML collection is

enabled. Column types are specified by adding the attribute type to

the column element. For example:

<column name="order_key" type="integer"/>

The information specified for decomposition is ignored when

composing a document.

With the RDB_node mapping approach, you don’t need to supply SQL

statements. However, putting complex query conditions in the RDB_node

element can be more difficult.

Decomposition table size requirements for RDB node mapping

Decomposition uses RDB_node mapping to specify how an XML document is

decomposed into DB2 UDB tables by extracting the element and attribute values

into table rows. The values from each XML document are stored in one or more

DB2 tables. Each table can have a maximum of 10240 rows decomposed from each

Chapter 2. Administration 51

document. For example, if an XML document is decomposed into five tables, each

of the five tables can have up to 10240 rows for that particular document.

Using multiple-occurring elements (elements with location paths that can occur

more than once in the XML structure) affects the number of rows inserted for each

document. For example, a document that contains an element <Part> that occurs

20 times, might be decomposed as 20 rows in a table. When using multiple

occurring elements, consider that a maximum of 10240 rows can be decomposed

into one table from a single document.

 Related concepts:

v “DAD files for XML collections” on page 169

 Related tasks:

v “Storing a DTD in the repository table” on page 54

Validating XML documents automatically

 After you choose an access and storage method, either XML column or XML

collection, you can determine whether to validate the XML documents. You can also

validate XML documents that are composed from XML collections.

You can have your XML data validated automatically by specifying YES for

validation in the DAD file. To have a document validated when it is stored into

DB2, you must specify a DTD within the <dtdid> element or in the <!DOCTYPE>

specification in the original document. To have a document validated when it is

composed from an XML collection in DB2, you must specify a DTD within the

<dtdid> element or within the <doctype> element in the DAD file.

The following factors should be taken into consideration when you decide whether

to validate your documents.

v The DTD ID or schema is useful only if you decide to validate the XML

document.

To validate the DAD with a schema, insert the schema tags that associate the

DAD file with the schema file. For example:

<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>

</schemabindings>

v You do not need a DTD to store or archive XML documents.

v You must decide whether to validate before inserting XML data into DB2. The

XML Extender does not validate data that has already been inserted into DB2.

v It might be necessary to process the DTD to set entity values and attribute

defaults regardless of whether you choose to validate.

v If you specify NO for validation in the DAD, then the DTD specified by the

XML document is not processed.

v Validating your XML data has a performance impact.

52 XML Extender Administration and Programming

Enabling servers for XML

 Before you can store or retrieve XML documents from DB2 UDB with XML

Extender, you must enable the server for XML. The XML Extender enables the

server that you are connected to.

When you enable a server for XML, the XML Extender does these tasks:

v Creates all the user-defined types (UDTs), user-defined functions (UDFs), and

stored procedures for XML Extender

v Creates and populates control tables with the necessary metadata that the XML

Extender requires

v Creates the DB2XML schema in user-defined table spaces and assigns the

necessary privileges

The fully qualified name of an XML function is db2xml.function-name, where

db2xml is an identifier that provides a logical grouping for SQL objects. You can

use the fully qualified name anywhere that you refer to a UDF or a UDT. You

can also omit the schema name when you refer to a UDF or a UDT; in this case,

DB2 UDB uses the function path to determine the function or data type.

 Procedure:

 You can enable a server with the administration wizard or from a command line.

To do this task from the command line, type dxxadm from the command line and

specify the server that is to be enabled.

The following example enables an existing server.

dxxadm enable_server -a V81A wlm environment wlmenv1 security DB2

To enable a server using the administration wizard, complete the following tasks:

1. Start the administration wizard and click Enable Server from the Launchpad

window.

If a server is already enabled, the Disable Server button appears. If the server

is disabled, the Enable Server button appears.

When the server is enabled, you return to the LaunchPad window.

After you enable a server, you can use the XML Extender UDTs, UDFs, and SPs.

 Related concepts:

v “Migrating XML Extender from Version 7 to Version 8” on page 37

Creating an XML table

 This task is part of the larger task of defining and enabling an XML column.

An XML table is used to store intact XML documents. To store whole documents in

your database with DB2 UDB XML Extender, you must create a table so that it

contains a column with an XML user-defined type (UDT). DB2 UDB XML Extender

provides you with three user-defined types to store your XML documents as

column data. These UDTs are: XMLVARCHAR, XMLCLOB, and XMLFILE. When a

table contains a column of XML type, you can then enable the table for XML.

Chapter 2. Administration 53

You can create a new table to add a column of XML type using the administration

wizard or the command line.

 Procedure:

 To create a table with a column of XML type using the command line:

Open the DB2 UDB command prompt and type a Create Table statement.

For example, in a sales application, you might want to store an XML-formatted

line-item order in a column called ORDER of a table called SALES_TAB. This table

also has the columns INVOICE_NUM and SALES_PERSON. Because it is a small

order, you store the sales order using the XMLVARCHAR type. The primary key is

INVOICE_NUM. The following CREATE TABLE statement creates a table with a

column of XML type:

CREATE TABLE sales_tab(

 invoice_num char(6) NOT NULL PRIMARY KEY,

 sales_person varchar(20),

 order XMLVarchar);

After you have created a table, the next step is to enable the column for XML data.

 Related concepts:

v “Planning side tables” on page 58

v Chapter 13, “XML Extender administration support tables,” on page 269

Storing a DTD in the repository table

 You can use a DTD to validate XML data in an XML column or in an XML

collection. DTDs can be stored in the DTD repository table, a DB2 UDB table called

DTD_REF. The DTD_REF table has a schema name of DB2XML. Each DTD in the

DTD_REF table has a unique ID. The XML Extender creates the DTD_REF table

when you enable a database for XML. You can insert the DTD from the command

line or by using the administration wizard.

 Procedure:

 To insert the DTD using the administration wizard:

1. Start the administration wizard and click Import a DTD from the Launchpad

window to import an existing DTD file into the DTD repository for the current

database. The Import a DTD window opens.

2. Specify the DTD file name in the DTD file name field.

3. Type the DTD ID in the DTD ID field.

The DTD ID is an identifier for the DTD. It can also be the path that specifys

the location of the DTD on the local system. The DTD ID must match the value

that is specified in the DAD file for the <DTDID> element.

4. Optional: Type the name of the author of the DTD in the Author field.

5. Click Finish to insert the DTD into the DTD repository table,

DB2XML.DTD_REF, and return to the Launchpad window.

To insert a DTD from the command line, issue a SQL INSERT statement from

Table 8 on page 55. For example:

54 XML Extender Administration and Programming

DB2 INSERT into DB2XML.DTD_REF values(’dxx_install

/samples/db2xml/dtd/getstart.dtd’,

DB2XML.XMLClobFromFile(’dxx_install/dxxsamples/dtd/getstart.dtd’,

0, ’user1’, ’user1’, ’user1’);

 Table 8. The column definitions for the DTD repository table

Column name Data type Description

DTDID VARCHAR(128) ID of the DTD.

CONTENT XMLCLOB Content of the DTD.

USAGE_COUNT INTEGER Number of XML columns and XML

collections in the database that use this DTD

to define a DAD.

AUTHOR VARCHAR(128) Author of the DTD, optional information for

the user to input.

CREATOR VARCHAR(128) User ID that does the first insertion.

UPDATOR VARCHAR(128) User ID that does the last update.

ROW_ID ROWID Identifier for the row.

Enabling XML columns

 To store an XML document in a DB2 UDB database, you must enable for XML the

column that will contain the document. Enabling a column prepares it for indexing

so that it can be searched quickly. You can enable a column by using the XML

Extender Administration wizard or the command line. The column must be of

XML type.

When XML Extender enables an XML column, it performs the following

operations:

v Reads the DAD file to:

– Check for the existence of the DTD in the DTD_REF table, if the DTDID was

specified.

– Create side tables on the XML column for indexing purpose.

– Prepare the column to contain XML data.
v Optionally creates a default view of the XML table and side tables. The default

view displays the application table and the side tables.

v Specifies a ROOT ID column, if one is not specified.

After you enable the XML column, you can:

v Create indexes on the side tables.

v Insert XML documents in the XML column.

v Query, update, or search the XML documents in the XML column.

You can enable XML columns using the Administration wizard or from a DB2

command line.

 Procedure (using the administration wizard):

 To enable XML columns using the administration wizard:

1. Set up and start the Administration wizard.

Chapter 2. Administration 55

2. Click Work with XML Columns from the Launchpad window to view the tasks

related to the XML Extender columns. The Select a Task window opens.

3. Click Enable a Column and then Next.

4. Specify the table and column.

v Select the table that contains the XML column from the Table name field.

v Select the column to enable from the Column name field.
5. Specify the DAD path and file name in the DAD file name field. For example:

dxx_install/samples/dad/getstart.dad

6. Optional: Type the name of an existing table space in the Table space field.

The default table space contains side tables that XML Extender created. If you

specify a table space, the side tables are created in the specified table space. If

you do not specify a table space, the side tables are created in the default table

space.

7. Optional: Type the name of the default view in the Default view field.

If specified, the default view is automatically created when the column is

enabled. The default view joins the XML table and all of the related side tables.

8. Recommended: Type the column name of the primary key for the table in the

Root ID field.

XML Extender uses the value of Root ID as a unique identifier to associate all

side tables with the application table. The XML Extender adds the

DXXROOT_ID column to the application table and generates an identifier.

9. Click Finish to enable the XML column, create the side tables, and return to the

Launchpad window.

v If the column is successfully enabled, you receive the message: column is

enabled.

v If the column is not successfully enabled, an error message is displayed,

along with prompts for you to correct the values of the entry fields until the

column is successfully enabled.

 Procedure (using the command line):

 To enable an XML column using the command line, use the DXXADM

enable_column command.

Syntax:

�� dxxadm enable_column -a subsystem_name tbName colName DAD_file �

�
-t

tablespace

-v

default_view

-r

root_id
 ��

Parameters:

subsystem_name

The name of the DB2 UDB subsystem.

tbName

The name of the table that contains the column to be enabled.

colName

The name of the XML column that is being enabled.

56 XML Extender Administration and Programming

DAD_file

The name of the file that contains the document access definition (DAD).

tablespace

A previously created tablespace that contains side tables that XML

Extender created. If not specified, the default tablespace is used.

default_view

Optional. The name of the default view that XML Extender created to join

an application table and all of the related side tables.

root_id Optional, but recommended. The column name of the primary key in the

application table and a unique identifier that associates all side tables with

the application table. Known as ROOT_ID. XML Extender uses the value of

ROOT_ID as a unique identifier to associate all side tables with the

application table. If the ROOT ID is not specified, XML Extender adds the

DXXROOT_ID column to the application table and generates an identifier.

 Restriction: If the application table has a column name of DXXROOT_ID,

you must specify the root_id parameter; otherwise, an error occurs.

Example:

dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER getstart.dad

 -v SALODVW -r INVOICE_NUMBER

In this example, the ORDER column is enabled in the SALES_TAB table . The DAD

file is getstart.dad, the default view is sales_order_view, and the ROOT ID is

INVOICE_NUMBER.

Using this example, the SALES_TAB table has the following columns:

 Column name Data type

INVOICE_NUM CHAR(6)

SALES_PERSON VARCHAR(20)

ORDER XMLVARCHAR

The following side tables are created based on the DAD specification:

ORDER_SIDE_TAB:

 Column name Data type Path expression

ORDER_KEY INTEGER /Order/@key

CUSTOMER VARCHAR(50) /Order

/Customer

/Name

INVOICE_NUM CHAR(6) N/A

PART_SIDE_TAB:

 Column name Data type Path expression

PART_KEY INTEGER /Order/Part/@key

PRICE DOUBLE /Order/Part

/ExtendedPrice

INVOICE_NUM CHAR (6) N/A

Chapter 2. Administration 57

SHIP_SIDE_TAB:

 Column name Data type Path expression

DATE DATE /Order/Part/

Shipment/ShipDate

INVOICE_NUM CHAR (6) N/A

All of the side tables have the column INVOICE_NUM of the same type, because

the ROOT ID is specified by the primary key INVOICE_NUM in the application

table. After the column is enabled, the value of the INVOICE_NUM column is

inserted in side tables when a row is inserted in the main table. If you specify a

default view when enabling the XML column ORDER, then XML Extender creates

a default view, sales_order_view. The view joins the above tables using the

following statement:

CREATE VIEW sales_order_view(invoice_num, sales_person, order,

 order_key, customer, part_key, price, date)

 AS

 SELECT sales_tab.invoice_num, sales_tab.sales_person, sales_tab.order,

 order_side_tab.order_key, order_side_tab.customer,

 part_side_tab.part_key, part_side_tab.price,

 ship_tab.date

 FROM sales_tab, order_side_tab, part_side_tab, ship_side_tab

 WHERE sales_tab.invoice_num = order_side_tab.invoice_num

 AND sales_tab.invoice_num = part_side_tab.invoice_num

 AND sales_tab.invoice_num = ship_side_tab.invoice_num

If you specify the table space when you enabled, the side tables are created in the

specified table space. If the table space is not specified, the side tables are created

in the default table space.

Planning side tables

 Side tables are DB2® tables used to extract the content of an XML document that

will be searched frequently. The XML column is associated with side tables that

hold the contents of the XML document. When the XML document is updated in

the application table, the values in the side tables are automatically updated.

Figure 8 on page 59 shows an XML column with side tables.

58 XML Extender Administration and Programming

Multiple occurrence:

 When elements and attributes occur multiple times in side tables, consider the

following issues in your planning:

v For elements or attributes in an XML document that have multiple occurrences,

you must create a separate side table for each XML element or attribute with

multiple occurrences, due to the complex structure of XML documents. This

means that elements or attributes have location paths that occur multiple times

and must be mapped to a table with only one column. You cannot have any

other columns in the table.

v When a document has multiple occurring location paths, XML Extender adds a

column named DXX_SEQNO with a type of INTEGER in each side table to track

the order of elements that occur more than once. With DXX_SEQNO, you can

retrieve a list of the elements in the same order as the original XML document

by specifying ORDER BY DXX_SEQNO in an SQL query.

 Default views and query performance:

 When you enable an XML column, you can specify a default, read-only view that

joins the application table with the side tables using a unique ID, called the ROOT

ID. With the default view, you can search XML documents by querying the side

tables. For example, if you have the application table SALES_TAB, and the side

tables ORDER_TAB, PART_TAB and SHIP_TAB, your query might look as follows:

SELECT sales_person FROM sales_order_view

 WHERE price > 2500.00

The SQL statement returns the names of salespeople in the SALES_TAB who have

orders stored in the column ORDER, and where the PRICE column is greater than

2500.00.

The advantage of querying the default view is that it provides a virtual single view

of the application table and side tables. However, the more side tables that are

created, the more expensive the query. Therefore, creating the default view is

recommended only when the total number of side-table columns is small.

Applications can create their own views that join the important side table columns.

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

XML document

Side
tables

DB2

XML column
with side tables

XML
CLOB

Figure 8. An XML column whose content is mapped in side tables. There is an XML file in

the column that is associated with side tables that hold the contents of the XML document.

Chapter 2. Administration 59

Indexing side tables

 This task is part of the larger task of defining and enabling an XML column.

Side tables contain the XML data in the columns that you specified when you

created the DAD file. After you enable an XML column and create side tables, you

can index the side tables. Indexing these tables helps you improve the performance

of the queries against the XML documents.

 Procedure:

 To create an index for your side tables from a DB2 UDB command line, use the

DB2 CREATE INDEX SQL statement.

from the DB2 UDB command line.

The following example creates indexes on four side tables using the DB2 command

prompt.

DB2 CREATE INDEX KEY_IDX

 ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX

 ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX

 ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX

 ON SHIP_SIDE_TAB(DATE)

Composing XML documents by using SQL mapping

You can compose XML documents using SQL mapping either from the command

line or by using the administration wizard.

You should use SQL mapping if you are composing an XML document and you

want to use an SQL statement to define the table and columns that you will derive

the data in the XML document. You can use SQL mapping only for composing

XML documents. You create a DAD file to compose the XML document with SQL

mapping.

 Prerequisites:

 Before you compose your documents, you must first map the relationship between

your DB2 UDB tables and the XML document. This step includes mapping the

hierarchy of the XML document and specifying how the data in the document

maps to a DB2 UDB table.

 Procedure:

 To compose XML documents from the command line, complete the following

steps:

 1. Create a new document in a text editor and type the following syntax:

<?XML version="1.0"?>

 2. Insert the <DAD> </DAD> tags.

The DAD element will contain all the other elements.

60 XML Extender Administration and Programming

3. Insert the tags used for validating the DAD with a DTD or schema.

v To validate the composed XML document with a DTD, insert the DTDID

tags that associate the DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtd>

v To validate the composed XML document with a schema, insert the schema

tags that associate the DAD file with the schema file. For example:

<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>

</schemabindings>

The dtd or schema is useful only if you decide to validate the XML document.

Use the validation tag to indicate whether DB2 UDB XML Extender validates

the XML document:

v If you want to validate the XML document, then type:

<validation>YES</validation>

v If you do not want to validate the XML document type:

<validation>NO</validation>

 4. Type <XCollection> </XCollection> tags to specify that you are using XML

collections as the access and storage method for your XML data.

 5. Inside the <Xcollection> </Xcollection> tags, insert the <SQL_stmt>

</SQL_stmt> tags to specify the SQL statement that will map the relational

data to the XML documents. This statement is used to query data from DB2

UDB tables. The following example shows a sample SQL query:

 <SQL_stmt>

 SELECT o.order_key, customer_name, customer_email, p.part_key, color,

 quantity, price, tax, ship_id, date, mode from order_tab o, part_tab p,

 table (select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 WHERE o.order_key = 1 and

 p.price > 20000 and

 p.order_key = o.order_key and

 s.part_key = p.part_key

 ORDER BY order_key, part_key, ship_id

 </SQL_stmt>

The example SQL statement for mapping the relational data to the XML

document has the following syntax:

v Columns are specified in top-down order by the hierarchy of the XML

document structure.

v The columns for an entity are grouped together.

v The object ID column is the first column in each group.

v The Order_tab table does not have a single key column, and therefore, the

generate_unique DB2 UDB built-in function is used to generate the ship_id

column.

v The object ID column is then listed in a top-down order in an ORDER BY

statement. The column in ORDER BY should not be qualified by any

schema. and the column names must match the column names in the

SELECT clause.
 6. Add the following prolog information to be used in the composed XML

document:

<prolog>?xml version="1.0"?</prolog>

 7. Type the <doctype> </doctype> tag. This tag contains the path to the DTD

against which the composed document will be validated. For example:

Chapter 2. Administration 61

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

<doctype>! DOCTYPE Order SYSTEM "dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

 8. Specify the root element and the elements and attributes that make up the

XML document:

a. Add the <root></root_node> tag to define the root element. All the

elements and attributes that make up the XML document are specified

within the root_node.

b. Use the <element_node>, <attribute_node>, and <text_node> tags to map

the elements and attributes in the XML document to element and attribute

nodes that correspond to DB2 UDB data.

<element_node> tag

Specifies the elements in the XML document. Set the name

attribute of the element_node tag to the name of the element. Each

element_node can have child element_nodes.

<attribute_node> tag

Specifies the attributes of an element in the XML document. The

attributes are nested in their element node. Set the name attribute

of the attribute_node tag to the name of the attribute.

<text_node> tag

Specifies the text content of the element and the column data in a

relational table for bottom-level element_nodes. For each

bottom-level element, specify <text_node> tags that indicate that

the element contains character data to be extracted from DB2 when

the document is composed. For each bottom-level element_node,

use a <column> tag to specify from which column to extract data

when the XML document is composed. Column tags are typically

inside the <attribute_node> or the <text_node> tags. All column

names defined must be in the <SQL_stmt> SELECT clause at the

beginning of the DAD file.
 9. Ensure that the ending tags are in the appropriate places:

a. Ensure that an ending </root_node> tag is after the last </element_node>

tag.

b. Ensure that an ending </Xcollection> tag is after the </root_node> tag.

c. Ensure that an ending </DAD> tag is after the </Xcollection> tag.
10. Save the file as file.dad. Where file is the name of your file.

The following Windows example shows a complete DAD:

<?xml version’"1.0">

<!DOCTYPE DAD SYSTEM "C:\dxx_xml\test\dtd\dad.dtd’>

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt> select o.order_key, customer_name, customer_email,

 p.part_key, color, qty, price, tax, ship_id, date, mode from order_tab o,

 part_tab p, (select db2xml.generate_unique() as

ship_id, date, mode, part_key from ship_tab) s where

 o.order_key = 1 and p.price . 20000 and p.order_key

 = o.order_key and s.part_key =p.part_key ORDER BY order_key,

part_key, ship_id</SQL_stmt>

<prolog>?XML version="1.0"<?/prolog>

<doctype>!DOCTYPE ORDER SYSTEM "C:\dxx_install\samples\db2xml\dtd/Order.dtd"

 </doctype>

 <root_node>

 <element_node name="Order">

 <attribute_node name="key">

 <column name="order_key"/>

62 XML Extender Administration and Programming

</attribute_node>

 <element_node name="Customer">

 <element_node name="NAME">

 <text_node><column name="customer_name"/></text_node>

 </element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="color">

 <column name="color"/>

 </attribute_node>

 <element_node name="key">

 <text_node><column name="part_key"/></text_node>

 </element_node>

 <element_node name ="Quantity">

 <text_node><column name="qty"/></text_node>

 </element_node>

 <element_node name="ExtendedPrice">

 <text_node><column name="price"/></text_node>

 </element_node>

 <element_node name="Tax">

 <text_node><column name="tax"/></text_node>

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name=shipDate">

 <text_node><column name="date"/><text_node>

 <element_node>

 <element_node name="ShipMode">

 <text_node><column name="mode"/></text_node>

 </element_node>

 </element_node>

 </element_node>

 </element_node>

 </root_node>

 </Xcollection>

 </DAD>

Composing XML collections by using RDB_node mapping

 RDB_node mapping uses the <RDB_node> tags to specify DB2 UDB tables,

columns, and conditions for an element or attribute node. Use this method if you

want to compose XML documents by using an XML-like structure. The

<RDB_node> uses the following elements:

table Defines the table that corresponds to the element.

column Defines the column that contains the corresponding element.

condition Optionally specifies a condition on the column.

The child elements that are used in the RDB_node element depend on the context

of the node and use the following rules:

 If the node type is: The following RDB child elements are used:

Table Column Condition1

Root element Yes No Yes

Attribute Yes Yes Optional

Text Yes Yes Optional

1 Required with multiple tables

Chapter 2. Administration 63

You can use the administration wizard or a command line to compose XML

documents by using RDB_node mapping.

 Restrictions:

 If you compose your XML collections using RDB_node mapping, all statements of

a given element must map to columns in the same table.

 Procedure:

 To compose an XML document from the command line using RDB_node mapping:

1. Open a text editor and create a DAD header by typing the following syntax:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "path/dad.dtd">

Where path/dad.dtd is the path and file name of the DTD for the DAD.

2. Insert the<DAD></DAD> tags. This element will contain all the other

elements.

3. Insert the tags used for validating the DAD with a DTD or schema.

v To validate the DAD with a DTD, insert the DTDID tags that associate the

DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtdid>

v To validate the DAD with a schema, insert the schema tags that associate the

DAD file with the schema file. For example:

<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>

</schemabindings>

The dtdid or schema is useful only if you decide to validate the XML

document. Use the validation tag to indicate whether DB2 UDB XML Extender

validates the XML document:

v If you want to validate the XML document, then type:

<validation>YES</validation>

v If you do not want to validate the XML document type:

<validation>NO</validation>

4. Insert the <XCollection> </XCollection> tags to specify that you are using

XML collections as the access and storage method for your XML data.

5. Add the following prolog information:

<prolog>?xml version="1.0"?</prolog>

6. Add the <doctype> </doctype> tags. For example:

<doctype>! DOCTYPE Order SYSTEM "dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

7. Insert the <root_node> </root_node> tags. Inside the root_node tags, specify

the elements and attributes that make up the XML document.

8. Inside the <root_node> tag, map the elements and attributes in the XML

document to element and attribute nodes that correspond to DB2 UDB data.

Use the RDB_node element for the element_node, text_node, and

attribute_node. These nodes provide a path from the XML data to the DB2

UDB data. To map the elements and attributes in your XML document:

a. Specify an RDB_node for the top element_node. This element specifies all

the tables that are associated with the XML document. To specify an

RDB_node for the top element_node, insert <RDB_node> tags after the

root_node tag.

64 XML Extender Administration and Programming

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

v Specify an RDB_node for the attribute_node.

v Specify an RDB_node for the text_node.
b. Define a table node for each table that contains data to be included in the

XML document. For example, if you have three tables (ORDER_TAB,

PART_TAB, and SHIP_TAB) that have column data to be in the document,

create a table node for each. For example:

<RDB_node>

<table name="ORDER_TAB">

<table name="PART_TAB">

<table name="SHIP_TAB">

</RDB_node>

If you are decomposing an XML document using the DAD file, you must

specify a primary key for each table. The primary key can consist of a single

column or multiple columns, called a composite key. The primary key is

specified by adding an attribute key to the table element of the RDB_node.

You must also specify a primary key for each table if you are going to

enable a collection. The example below shows how you specify a key

column for each table specified in the element_node.

<RDB_node>

<table name="ORDER_TAB" key="order_key">

<table name="PART_TAB" key="part_key">

<table name="SHIP_TAB" key="ship_key">

</RDB_node>

 Related concepts:

v “Mapping schemes for XML collections” on page 104

v “Location paths” on page 112

v “DAD files for XML collections” on page 169

v “Requirements for RDB_Node mapping” on page 109

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Decomposing an XML collection by using RDB_node mapping” on page 65

v “Managing data in XML collections” on page 92

v “Updating, deleting, and retrieving data in XML collections” on page 101

Decomposing an XML collection by using RDB_node mapping

 Use RDB_node mapping to decompose XML documents. This method uses the

<RDB_node> to specify DB2 UDB tables, columns, and conditions for an element

or attribute node. The <RDB_node> uses the following elements:

table Defines the table that corresponds to the element.

column Defines the column that contains the corresponding element.

condition Optionally specifies a condition on the column.

The child elements that are used in the <RDB_node> depend on the context of the

node and use the following rules:

Chapter 2. Administration 65

If the node type is: RDB child element is used:

Table Column Condition1

Root element Yes No Yes

Attribute Yes Yes optional

Text Yes Yes optional

(1) Required with multiple tables

 Procedure using a command line::

 To decompose XML documents using a command line:

 1. Create a file in any text editor. Create a DAD header by typing the following

syntax:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "path/dad.dtd">

Where path/dad.dtd is the path and file name of the DTD for the DAD.

 2. Insert the <DAD> </DAD> tags.

 3. Insert the tags used for validating the DAD with a DTD or schema.

v To validate the DAD with a DTD, insert the DTDID tags that associate the

DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtd>

v To validate the DAD with a schema, insert the schema tags that associate

the DAD file with the schema file. For example:

<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>

</schemabindings>

The dtdid or schema is useful only if you decide to validate the XML

document. Use the validation tag to indicate whether DB2 UDB XML Extender

validates the XML document:

v If you want to validate the XML document, then type:

<validation>YES</validation>

v If you do not want to validate the XML document type:

<validation>NO</validation>

 4. Insert <XCollection> </XCollection> tags to specify that you are using XML

collections as the access and storage method for your XML data.

 5. Add the following prolog information:

<prolog>?xml version="1.0"?</prolog>

 6. Add the <doctype></doctype> tags. For example:

<doctype>! DOCTYPE Order SYSTEM "dxx_install

 /samples/db2xml/dtd/getstart.dtd"</doctype>

If you need to specify an encoding value for internationalization, add the

ENCODING attribute and value.

 7. Define the root_node using the <root_node> </root_node> tags.

 8. Inside the root_node, map the elements and attributes in the XML document

to element nodes and attribute nodes that correspond to DB2 UDB data. These

nodes provide a path from the XML data to the DB2 UDB data.

a. Define a top level, root element_node. This element_node contains:

v Table nodes with a join condition to specify the collection.

66 XML Extender Administration and Programming

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

v Child elements

v Attributes

To specify the table nodes and condition:

1) Create an RDB_node element. For example:

<RDB_node>

</RDB_node>

2) Define a table_node for each table that contains data to be included in

the XML document. For example, if you have three tables,

ORDER_TAB, PART_TAB, and SHIP_TAB, that have column data to be

in the document, create a table node for each. For example:

<RDB_node>

<table name="ORDER_TAB">

<table name="PART_TAB">

<table name="SHIP_TAB">

</RDB_node>

3) Define a join condition for the tables in the collection. The syntax is:

table_name.table_column = table_name.table_column AND

table_name.table_column = table_name.table_column ...

For example:

<RDB_node>

<table name="ORDER_TAB">

<table name="PART_TAB">

<table name="SHIP_TAB">

<condition>

 order_tab.order_key = part_tab.order_key AND

 part_tab.part_key = ship_tab.part_key

</condition>

</RDB_node>

4) Specify a primary key for each table. The primary key consists of a

single column or multiple columns, called a composite key. To specify

the primary key, add an attribute key to the table element of the

RDB_node. The following example defines a primary key for each of

the tables in the RDB_node of the root element_node Order:

<element_node name="Order">

 <RDB_node>

 <table name="order_tab" key="order_key"/>

 <table name="part_tab" key="part_key price"/>

 <table name="ship_tab" key="date mode"/>

 <condition>

 order_tab.order_key = part_tab.order_key AND

 part_tab.part_key = ship_tab.part_key

 </condition>

 <RDB_node>

The key attribute is required for decomposition and enabling a

collection because the DAD file used must support both composition

and decomposition.
b. Define an <element_node> tag for each element in your XML document

that maps to a column in a DB2 UDB table. For example:

<element_node name="name">

</element_node>

An element node can have one of the following types of elements:

text_node To specify that the element has content to a DB2 UDB table

It does not have child elements.

attribute_node

To specify an attribute.

Chapter 2. Administration 67

child elements

Children of the element_node.

The text_node contains an RDB_node to map content to a DB2 UDB table

and column name.

RDB_nodes are used for bottom-level elements that have content to map to

a DB2 UDB table. An RDB_node has the following child elements:

table Defines the table that corresponds to the element.

column Defines the column that contains the corresponding

element .

condition Optionally specifies a condition on the column.
For example, you might have an XML element <Tax> for which you want

to store the untagged content in a column called TAX:

XML document:

<Tax>0.02</Tax>

In this case, you want the value 0.02 to be stored in the column TAX.

In the DAD file, you specify an <RDB_node> tag to map the XML element

to the DB2 UDB table and column.

DAD file:

<element_node name="Tax">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="tax"/>

 </RDB_node>

 </text_node>

</element_node>

The <RDB_node> tag specifies that the value of the Tax element is a text

value, the data is stored in the PART_TAB table in the TAX column.

c. Define an <attribute_node> tag for each attribute in your XML document

that maps to a column in a DB2 UDB table. For example:

<attribute_node name="key">

</attribute_node>

The attribute_node has an RDB_node to map the attribute value to a DB2

UDB table and column. An RDB_node has the following child elements:

table Defines the table that corresponds to the element.

column Defines the column that contains the corresponding

element .

condition Optionally specifies a condition on the column.
For example, you might have an attribute key for an Order element. The

value of key needs to be stored in a column PART_KEY.

XML document:

<Order key="1">

In the DAD file, create an attribute_node for key and indicate the table

where the value of 1 is to be stored.

DAD file:

68 XML Extender Administration and Programming

<attribute_node name="key">

 <RDB_node>

 <table name="part_tab">

 <column name="part_key"/>

 <RDB_node>

</attribute_node>

 9. Specify the column type for the RDB_node for each attribute_node and

text_node. This ensures the correct data type for each column where the

untagged data will be stored. To specify the column types, add the attribute

type to the column element. The following example defines the column type

as an INTEGER:

<attribute_node name="key">

 <RDB_node>

 <table name="order_tab"/>

 <column name="order_key" type="integer"/>

 </RDB_node>

</attribute_node>

10. Ensure that the ending tags are in the appropriate places:

a. Ensure that an ending </root_node> tag is after the last </element_node>

tag.

b. Ensure that an ending </Xcollection> tag is after the </root_node> tag.

c. Ensure that an ending </DAD> tag is after the </Xcollection> tag.

 Related concepts:

v “XML Extenders decomposition stored procedures” on page 214

 Related tasks:

v “Decomposing XML documents into DB2 UDB data” on page 96

v “Calling XML Extender composition stored procedures” on page 201

Chapter 2. Administration 69

70 XML Extender Administration and Programming

Part 3. Programming

This part describes programming techniques for managing your XML data.

© Copyright IBM Corp. 1999, 2004 71

72 XML Extender Administration and Programming

Chapter 3. XML columns

This chapter describes how to manage data in XML columns using DB2.

Managing data in XML columns

 When you use XML columns to store data, you store an entire XML document in

its native format as column data in DB2. This access and storage method allows

you to keep the XML document intact, while giving you the ability to index and

search the document, retrieve data from the document, and update the document.

After you enable a database for XML, the following user-defined types (UDTs),

provided by XML Extender, are available for your use:

XMLCLOB

Use this UDT for XML document content that is stored as a character large

object (CLOB) in DB2.

XMLVARCHAR

Use this UDT for XML document content that is stored as a VARCHAR in

DB2.

XMLFILE

Use this UDT for an XML document that is stored in a file on a local file

system.

You can create or alter application tables to have columns of XML UDT data type.

These tables are known as XML tables.

After you enable a column in a table for XML, you can create the XML column and

perform the following management tasks:

v Store XML documents in DB2

v Retrieve XML data or documents from DB2

v Update XML documents

v Delete XML data or documents

To perform all of these tasks, use the user-defined functions (UDFs) provided by

XML Extender. Use default casting functions to store XML documents in DB2.

Default casting functions cast the SQL base type to the XML Extender user-defined

types and convert instances of a data type (origin) into instances of a different data

type (target).

 Related concepts:

v “XML columns as a storage and access method” on page 73

v “Using indexes for XML column data” on page 75

XML columns as a storage and access method

 There will be times when you want to store and maintain the document structure

as it currently is. XML contains all the necessary information to create a set of

documents.

© Copyright IBM Corp. 1999, 2004 73

For example, if you are a news publishing company that serves articles over the

Web, you might want to maintain an archive of published articles. In such a

scenario, XML Extender lets you store your complete or partial XML articles in a

column of a DB2® table, which is the XML column, as shown in Figure 9.

 The XML column storage and access method allows you to manage your XML

documents using DB2. You can store XML documents in a column of XML type

and you can query the contents of the document to find a specific element or

attribute. You can associate and store a DTD in DB2 UDB for one or more

documents. Additionally, you can map element and attribute content to DB2 UDB

tables, called side tables. These side tables can be indexed for improved query

performance, but are not indexed automatically. The column that is used to store

the document is called an XML column. It specifies that the column is used for the

XML column storage and access method.

In the document access definition (DAD) file you enter <Xcolumn> and

</Xcolumn> tags to denote that the storage and access method that you will use is

XML column. The DAD will then map the XML element and attribute content to

be stored in side tables.

Before you begin working with XML Extender to store your documents, you need

to understand the structure of the XML document so that you can determine how

to index elements and attributes in the document. When planning how to index

the document, you need to determine:

v The XML user-defined type in which you will store the XML document

v The XML elements and attributes that your application will frequently search, so

that their content can be stored in side tables and indexed to improve

performance

v Whether or not you want to validate XML documents in the column with a DTD

Defining and enabling an XML column

 You use XML columns to store and access entire XML documents in the database.

This storage method allows you to store documents using the XML file types,

index the columns in side tables, and query or search XML documents.

Use XML columns when you want to store entire XML documents into a DB2 table

column if the document is not going to be frequently updated or if you want to

store intact XML documents.

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

DB2 XML document

XML CLOB

Figure 9. Storing structured XML documents in a DB2 UDB table column

74 XML Extender Administration and Programming

If you want to map XML document structures to DB2 UDB tables so that you can

compose XML documents from existing DB2 UDB data or decompose XML

documents into DB2 data, then you should use XML collections instead of XML

columns.

 Procedure:

 To define and enable an XML column from the command line :

1. Create a document access definition (DAD) file.

2. Create a table in which the XML documents are stored.

3. Enable the column for XML data. If the DAD specifies validation, then insert

the column into dtd_ref table.

4. Index the side tables.

The XML column is created as an XML user data type. After these tasks are

complete, you will be able to store XML documents in the column. These

documents can then be updated, searched, and extracted.

 Related concepts:

v “XML columns as a storage and access method” on page 73

v “Using indexes for XML column data” on page 75

v “Validating XML documents automatically” on page 52

v “Lesson: Storing an XML document in an XML column” on page 8

 Related tasks:

v “Creating a DAD file for XML columns” on page 167

v “Creating an XML table” on page 53

v “Enabling XML columns” on page 55

v “Indexing side tables” on page 60

v “Managing data in XML columns” on page 73

Using indexes for XML column data

 An important planning decision when using XML columns, is whether to index the

side tables for XML column documents. This decision should be made based on

how often you need to access the data and how critical performance is during

structural searches.

When using XML columns, which contain entire XML documents, you can create

side tables to contain columns of XML element or attribute values, then create

indexes on these columns. You must determine the elements and attributes for

which you need to create the index.

XML column indexing allows frequently queried data of general data types (such

as integer, decimal, or date) to be indexed using the native DB2® index support

from the database engine. The XML Extender extracts the values of XML elements

or attributes from XML documents and stores them in the side tables, allowing you

to create indexes on these side tables. You can specify each column of a side table

with a location path that identifies an XML element or attribute and an SQL data

type.

Chapter 3. XML columns 75

The XML Extender automatically populates the side table when you store XML

documents in the XML column.

For fast search, create indexes on these columns using the DB2 UDB B-tree indexing

technology. See the DB2 UDB documentation for more information on B-tree

indexing.

You must keep the following considerations in mind when creating an index:

v For elements or attributes in an XML document that have multiple occurrences,

you must create a separate side table for each XML element or attribute with

multiple occurrences due to the complex structure of XML documents.

v You can create multiple indexes on an XML column.

v You can associate side tables with the application table using the ROOT ID, the

column name of the primary key in the application table and a unique identifier

that associates all side tables with the application table. You can decide whether

you want the primary key of the application table to be the ROOT ID, although

it cannot be the composite key. This method is recommended.

If the single primary key does not exist in the application table, or for some

reason you don’t want to use it, XML Extender alters the application table to

add a column DXXROOT_ID, which stores a unique ID that is created at the

insertion time. All side tables have a DXXROOT_ID column with the unique ID.

If the primary key is used as the ROOT ID, all side tables have a column with

the same name and type as the primary key column in the application table, and

the values of the primary keys are stored.

v If you enable an XML column for the DB2 UDB Text Extender, you can also use

the Text Extender’s structural-text feature. The Text Extender has ″section search″

support, which extends the capability of a conventional full-text search by

allowing search words to be matched within a specific document context that is

specified by location paths. The structural-text index can be used with XML

Extender’s indexing on general SQL data types.

Storing XML data

 Using XML Extender, you can insert intact XML documents into an XML column.

If you define side tables, XML Extender automatically updates these tables. When

you store an XML document directly, XML Extender stores the base type as an

XML type.

Prerequisites:

v Ensure that you created or updated the DAD file.

v Determine what data type to use when you store the document.

v Choose a method (casting functions or UDFs) for storing the data in the DB2®

table.

Specify an SQL INSERT statement that specifies the XML table and column to

contain the XML document.

The XML Extender provides two methods for storing XML documents: default

casting functions and storage UDFs.

76 XML Extender Administration and Programming

Table 9 shows when to use each method.

 Table 9. The XML Extender storage functions

If the DB2

UDB base

type is ...

Store in DB2 UDB as ...

XMLVARCHAR XMLCLOB XMLDBCLOB XMLFILE

VARCHAR XMLVARCHAR() N/A N/A XMLFile

FromVarchar()

CLOB N/A XMLCLOB() XMLDB

CLOB,

casting

function

XMLFile

FromCLOB()

FILE XMLVarcha

rFromFile()

XMLCLOB

FromFile()

XMLDB

CLOBFrom

File, UDF

XMLFILE

Default casting functions for storing XML data

For each UDT, a default casting function exists to cast the SQL base type to the

UDT. You can use the casting functions provided by XML Extender in your

VALUES clause to insert data. Table 10 shows the provided casting functions:

 Table 10. The XML Extender default casting functions

Casting function Return type Description

XMLVARCHAR(VARCHAR) XMLVARCHAR Input from memory buffer of

VARCHAR

XMLCLOB(CLOB) XMLCLOB Input from memory buffer of

CLOB or a CLOB locator

XMLFILE(VARCHAR) XMLFILE Store only the file name

For example, the following statement inserts a cast VARCHAR type into the

XMLVARCHAR type:

INSERT INTO sales_tab

VALUES(’123456’, ’Sriram Srinivasan’, DB2XML.XMLVarchar(:xml_buff))

Storage UDFs for storing XML data

For each XML Extender UDT, a storage UDF exists to import data into DB2 from a

resource other than its base type. For example, if you want to import an XML file

document to DB2 UDB as an XMLCLOB data type, you can use the function

XMLCLOBFromFile().

Table 11 shows the storage functions provided by the XML Extender.

 Table 11. The XML Extender storage UDFs

Storage user-defined

function Return type Description

XMLVarcharFromFile() XMLVARCHAR Reads an XML document

from a file on the server and

returns the value of the

XMLVARCHAR data type.

Optional: Specify the

encoding of the file.

Chapter 3. XML columns 77

||

|
|||

|||
|
|
|
|
|

Table 11. The XML Extender storage UDFs (continued)

Storage user-defined

function Return type Description

XMLCLOBFromFile() XMLCLOB Reads an XML document

from a file on the server and

returns the value of the

XMLCLOB data type.

Optional: Specify the

encoding of the file.

XMLFileFromVarchar() XMLFILE Reads an XML document

from memory as VARCHAR

data, writes the document to

an external file, and returns

the value of the XMLFILE

data type, which is the file

name. Optional: Specify the

encoding of the external file.

XMLFileFromCLOB() XMLFILE Reads an XML document

from memory as CLOB data

or as a CLOB locator, writes

the document to an external

file, and returns the value of

the XMLFILE data type,

which is the file name.

Optional: Specify the

encoding of the external file.

For example, using the XMLCLOBFromFile() function, the following statement

stores a record in an XML table as an XMLCLOB:

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

 VALUES(’1234’, ’MyName’,

 XMLCLOBFromFile(’dxx_install/samples/db2xml/xml/getstart.xml’))

The example imports the XML document from the file named

dxx_install/samples/db2xml/xml/getstart.xml into the column ORDER in the

table SALES_TAB.

Method for retrieving an XML document

 Using XML Extender , you can retrieve either an entire document or the contents

of elements and attributes. When you retrieve an XML column directly, the XML

Extender returns the UDT as the column type. For details about retrieving data, see

the following sections:

v “Retrieving an entire XML document” on page 79

v “Retrieving element contents and attribute values from XML documents” on

page 80

The XML Extender provides two methods for retrieving data: default casting

functions and the Content() overloaded UDF. Table 12 on page 79 shows when to

use each method.

78 XML Extender Administration and Programming

|

|
|||

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|

Table 12. The XML Extender retrieval functions

When the XML

type is ...

Retrieve from DB2 UDB as ...

VARCHAR CLOB DBCLOB FILE

XMLVARCHAR VARCHAR N/A N/A Content() UDF

XMLCLOB N/A XMLCLOB N/A Content() UDF

XMLFILE N/A Content() UDF N/A FILE

Retrieving an entire XML document

Procedure:

To retrieve an entire XML document:

1. Ensure that you stored the XML document in an XML table and determine

what data you want to retrieve.

2. Choose a method (casting functions or UDFs) for retrieving the data in the DB2

UDB table.

3. If you are using the overloaded Content() UDF, determine the data type of the

data that is being retrieved, and which data type is to be exported.

4. The XML column from which the element or attribute is to be extracted must

be defined as either an XMLVARCHAR, XMLCLOB as LOCATOR, or XMLFILE

data type.

Specify an SQL query that specifies the XML table and column from which to

retrieve the XML document.

Default casting functions for retrieving XML data

The default casting function provided by DB2 UDB for UDTs converts an XML

UDT to an SQL base type, and then operates on it. In your SELECT statement, you

can use the casting functions that are provided by XML Extender to retrieve data.

Table 13 shows the provided casting functions.

 Table 13. The XML Extender default cast functions

Casting used in SELECT

clause Return type Description

varchar(XMLVARCHAR) VARCHAR XML document in

VARCHAR

clob(XMLCLOB) CLOB XML document in CLOB

varchar(XMLFile) VARCHAR XML file name in VARCHAR

For example, the following statement retrieves the XMLVARCHAR and stores it in

memory as a VARCHAR data type:

EXEC SQL SELECT DB2XML.XMLVarchar(order) from SALES_TAB

Using the Content() UDF for retrieving XML data

Use the Content() UDF to retrieve the document content from external storage to

memory, or export the document from internal storage to an external file, which is

a file that is external to DB2 UDB on the DB2 UDB server.

For example, you might have your XML document stored as an XMLFILE data

type. If you want to operate on it in memory, you can use the Content() UDF,

which can take an XMLFILE data type as input and return a CLOB.

Chapter 3. XML columns 79

The Content() UDF performs two different retrieval functions, depending on the

specified data type. It can:

v Retrieve a document from external storage and put it in memory.

You can use Content() UDF to retrieve the XML document to a memory buffer

or a CLOB locator (a host variable with a value that represents a single LOB

value in the database server) when the document is stored as the external file.

Use the following function syntax, where xmlobj is the XML column being

queried:

XMLFILE to CLOB:

Content(xmlobj XMLFile)

v Retrieve a document from internal storage and export it to an external file.

You can use the Content() UDF to retrieve an XML document that is stored

inside DB2 UDB as an XMLCLOB data type and export it to a file on the

database server file system. The Content() UDF returns the name of the file as a

VARCHAR data type.

Use the following function syntax:

XML type to external file:

Content(xmlobj XML type, filename varchar(512), targetencoding varchar(100))

Where:

xmlobj Is the name of the XML column from which the XML content is to be

retrieved. xmlobj can be of type XMLVARCHAR or XMLCLOB.

filename

Is the name of the external file in which the XML data is to be stored.

targetencoding

Optional: Specifies the encoding of the output file.

In the example below, a small C program segment with embedded SQL statements

(SQL statements coded within an application program) shows how an XML

document is retrieved from a file to memory. This example assumes that the data

type of the ORDER column is XMLFILE.

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB_LOCATOR xml_buff;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO SALES_DB;

EXEC SQL DECLARE c1 CURSOR FOR

 SELECT Content(order) from sales_tab

EXEC SQL OPEN c1;

 do {

 EXEC SQL FETCH c1 INTO :xml_buff;

 if (SQLCODE != 0) {

 break;}

 else { /* do whatever you need to do with the XML doc in buffer */}

 }

 EXEC SQL CLOSE c1;

 EXEC SQL CONNECT RESET;

Retrieving element contents and attribute values from XML

documents

You can retrieve (extract) the content of an element or the value of an attribute

from one or more XML documents (single document or collection document

search). The XML Extender provides user-defined extracting functions that you can

specify in the SQL SELECT clause for each of the SQL data types.

80 XML Extender Administration and Programming

|

|
|

Retrieving element content and attribute values is useful when developing your

applications, because you can access XML data as relational data. For example, you

might have 1000 XML documents that are stored in the ORDER column in the

SALES_TAB table. To retrieve the names of all customers who have ordered items

over $2500, use the following SQL statement with the extracting UDF in the

SELECT clause:

SELECT extractVarchar(Order, ’/Order/Customer/Name’) from sales_order_view

 WHERE price > 2500.00

In this example, the extracting UDF retrieves the content of the <customer>

element from the ORDER column and stores it as a VARCHAR data type. The

location path is /Order/Customer/Name. Additionally, the number of returned values

is reduced by using a WHERE clause, which specifies that only the contents of the

<customer> element with a sub-element <ExtendedPrice> that has a value greater

than 2500.00.

Table 14 on page 82 shows the UDFs that you can use to extract element content

and attribute values, using the following syntax as either table or scalar functions.

Syntax:

extractretrieved_datatype(xmlobj, path)

retrieved_datatype

The data type that is returned from the extracting function; it can be one of

the following types:

v INTEGER

v SMALLINT

v DOUBLE

v REAL

v CHAR

v VARCHAR

v CLOB

v DATE

v TIME

v TIMESTAMP

xmlobj The name of the XML column from which the element or attribute is to be

extracted. This column must be defined as one of the following XML

user-defined types:

v XMLVARCHAR

v XMLCLOB as LOCATOR

v XMLFILE

path The location path of the element or attribute in the XML document (such

as /Order/Customer/Name).

Restriction: Extracting UDFs can support location paths that have predicates with

attributes, but not elements. For example, the following predicate is supported:

’/Order/Part[@color="black "]/ExtendedPrice’

The following predicate is not supported:

’/Order/Part/Shipment/[Shipdate < "11/25/00"]’

Chapter 3. XML columns 81

Table 14 shows the extracting functions, both in scalar and table format.

 Table 14. The XML Extender extracting functions

Scalar function Table function Returned column

name (table function)

Return type

extractInteger() extractIntegers() returnedInteger INTEGER

extractSmallint() extractSmallints() returnedSmallint SMALLINT

extractDouble() extractDoubles() returnedDouble DOUBLE

extractReal() extractReals() returnedReal REAL

extractChar() extractChars() returnedChar CHAR

extractVarchar() extractVarchars() returnedVarchar VARCHAR

extractCLOB() extractCLOBs() returnedCLOB CLOB

extractDate() extractDates() returnedDate DATE

extractTime() extractTimes() returnedTime TIME

extractTimestamp() extractTimestamps() returnedTimestamp TIMESTAMP

Scalar function example: In the following example, one value is inserted with the

attribute key value of 1. The value is extracted as an integer and automatically

converted to a DECIMAL type.

CREATE TABLE t1(key decimal(3,2));

INSERT into t1 values

SELECT * from table(DB2XML.extractInteger(DB2XML.XMLFile

 (’c:\dxx_install\samples\db2xml\xml\getstart.xml’), ’/Order/@key="1"]’));

SELECT * from t1;

Updating XML data

 With XML Extender, you can update the entire XML document by replacing the

XML column data, or you can update the values of specified elements or attributes.

Procedure

To update XML data:

1. The XML document must be stored in an XML table.

2. You must know what data you want to retrieve.

3. You must choose a method for updating the data in the DB2 UDB table (casting

functions or UDFs).

4. Specify an SQL query that specifies the XML table and column to update.

Updating an entire XML document

You can update an XML document by using a default casting function, or by using

a storage UDF.

Updating with a default casting function

For each user-defined type (UDT), a default casting function exists to cast the SQL

base type to the UDT. You can use the XML Extender-provided casting functions to

update the XML document.

82 XML Extender Administration and Programming

For example, the following statement updates the XMLVARCHAR type from the

cast VARCHAR type, assuming that xml_buf is a host variable that is defined as a

VARCHAR type.

UPDATE sales_tab SET=DB2XML.XMLVarchar(:xml_buff)

Updating XML documents with a storage UDF

For each of the XML Extender UDTs, a storage UDF exists to import data into DB2

UDB from a resource other than its base type. You can use a storage UDF to

update the entire XML document by replacing it.

The following example updates the XML object from the file named

dxx_install/samples/db2xml/xml/getstart.xml to the ORDER column in the

SALES_TAB table.

UPDATE sales_tab

 set order = XMLVarcharFromFile(’dxx_install/samples/db2xml

 /xml/getstart.xml) WHERE sales_person = ’MyName’

Updating specific elements and attributes of an XML

document

Use the Update UDF to make specific changes, rather than updating the entire

document. When you use this UDF, you specify the location path of the element or

attribute whose value will be replaced. You do not need to edit the XML

document; XML Extender makes the change for you.

Syntax:

Update(xmlobj, path, value)

The syntax has the following components:

xmlobj The name of the XML column for which the value of the element or

attribute is to be updated.

path The location path of the element or attribute that is to be updated.

value The new value that is to be updated.

For example, the following statement replaces the value of the <Customer>

element with IBM:

UPDATE sales_tab

 set order = Update(order, ’/Order/Customer/Name’, ’IBM’)

 WHERE sales_person = ’Sriram Srinivasan’

Multiple occurrence: When you specify a location path in the Update UDF, the

content of every element or attribute with a matching path is updated with the

supplied value. If a location path occurs in a document more than once, the

Update UDF replaces all of the existing values with the value provided in the value

parameter.

Methods for searching XML documents

 Searching XML data is similar to retrieving XML data: both techniques retrieve

data for further manipulation but they search by using the content of the WHERE

clause as the criteria for retrieval.

The XML Extender provides several methods for searching XML documents that

are stored in an XML column. You can:

Chapter 3. XML columns 83

v Search document structure and return results based on element content or

attribute values.

v Search a view of the XML column and its side tables.

v Search the side tables directly for better performance.

v Search using extracting UDFs with WHERE clauses.

v Use the DB2® Text Extender to search column data within the structural content

for a text string.

With XML Extender you can use indexes to quickly search columns in side tables.

These columns contain XML element content or attribute values that are extracted

from XML documents. By specifying the data type of an element or attribute, you

can search on an SQL data type or do range searches. For example, in the purchase

order example, you could search for all orders that have an extended price of over

2500.00.

Additionally, you can use the Text Extender to do structural text search or full text

search. For example, you might have a column called RESUME that contains

resumes in XML format. If you want to find the names of all applicants who have

Java™ skills, you could use the DB2 UDB Text Extender to search on the XML

documents for all resumes where the <skill> element contains the character string

“JAVA”.

The following sections describe search methods:

v “Searching the XML document by structure”

v “Using the DB2 UDB Text Extender for structural text searches of XML

documents” on page 86

Searching the XML document by structure

Using XML Extender search features, you can search XML data in a column based

on the document structure (the elements and attributes in the document).

Procedures:

To search the data, you can:

v Directly query the side tables.

v Use a joined view.

v Use extracting UDFs.

These search methods are described in the following examples are based on the

following scenario. The SALES_TAB table has an XML column named ORDER.

This column has three side tables, ORDER_SIDE_TAB, PART_SIDE_TAB, and

SHIP_SIDE_TAB. A default view, sales_order_view, was specified when the

ORDER column was enabled. This view joins these tables using the following

CREATE VIEW statement:

CREATE VIEW sales_order_view(invoice_num, sales_person, order,

 order_key, customer, part_key, price, date)

 AS

 SELECT sales_tab.invoice_num, sales_tab.sales_person, sales_tab.order,

 order_side_tab.order_key, order_side_tab.customer,

 part_side_tab.part_key, ship_side_tab.date

 FROM sales_tab, order_side_tab, part_side_tab, ship_side_tab

 WHERE sales_tab.invoice_num = order_side_tab.invoice_num

 AND sales_tab.invoice_num = part_side_tab.invoice_num

 AND sales_tab.invoice_num = ship_side_tab.invoice_num

84 XML Extender Administration and Programming

Example: searching with direct query on side tables

Direct query with subquery search provides the best performance for a structural

search when the side tables are indexed.

Procedure:

You can use a query or subquery to search side tables correctly.

For example, the following statement uses a query and subquery to directly search

a side table:

SELECT sales_person from sales_tab

 WHERE invoice_num in

 (SELECT invoice_num from part_side_tab

 WHERE price > 2500.00)

In this example, invoice_num is the primary key in the SALES_TAB table.

Example: searching from a joined view

The XML Extender can create a default view that joins the application table and

the side tables using a unique ID. You can use this default view, or any view that

joins an application table and side tables, to search column data and query the side

tables. This method provides a single virtual view of the application table and its

side tables. However, the more side tables that are created, the longer the query

takes to run.

Tip: You can use the root ID, or DXXROOT_ID (created by XML Extender), to join

the tables when you create your own view.

For example, the following statement searches the view named

SALES_ORDER_VIEW and returns the values from the SALES_PERSON column

where the line item orders have a price greater than 2500.00.

SELECT sales_person from sales_order_view

 WHERE price > 2500.00

Example: searching with extracting UDFs

You can also use XML Extender’s extracting UDFs to search on elements and

attributes, when you did not create indexes or side tables for the application table.

Using the extracting UDFs to scan the XML data is expensive and should only be

used with WHERE clauses that restrict the number of XML documents that are

included in the search.

The following statement searches with an extracting XML Extender UDF:

SELECT sales_person from sales_tab

 WHERE extractVarchar(order, ’/Order/Customer/Name’)

 like ’%IBM%’

 AND invoice_num > 100

In this example, the extracting UDF extracts </Order/Customer/Name> elements

that contain the substring IBM.

Example: searching on elements or attributes with multiple

occurrence

When you search on elements or attributes that have multiple occurrence, use the

DISTINCT clause to prevent duplicate values.

The following statement searches with the DISTINCT clause:

Chapter 3. XML columns 85

SELECT sales_person from sales_tab

 WHERE invoice_num in

 (SELECT DISTINCT invoice_num from part_side_tab

 WHERE price > 2500.00)

In this example, the DAD file specifies that /Order/Part/Price has multiple

occurrence and creates a side table, PART_SIDE_TAB, for it. The PART_SIDE_TAB

table might have more than one row with the same invoice_num. Using DISTINCT

returns only unique values.

Using the DB2 UDB Text Extender for structural text searches

of XML documents

If DB2 UDB Text Extender is installed, you can use it to perform a structural text

search.

Procedure:

To use the DB2 UDB Text Extender:

1. Decide whether you want to use structural text search or full text search.

2. Enable an XML column for the DB2 UDB Text Extender.

3. Create a query to perform the search.

To learn how to use the DB2 UDB Text Extender search, see DB2 Universal

Database Extenders: Text Extender Administration and Programming, Version 7.

Using structural text searches and full text searches

When searching the XML document structure, XML Extender searches elements

that are converted to general data types, but it does not search text. You can use

the Text Extender for structural text search or full text search on a column that is

enabled for XML. The DB2 UDB Text Extender supports XML document search in

DB2 UDB Version 6.1 or later. Text Extender is available on AIX, Windows®

operating systems, iSeries™, and the Solaris Operating Environment.

Structural text search

Searches text strings that are based on the tree structure of the XML

document. For example, in a document structure of /Order/Customer/Name,

you can use a structural text search to find the character string ″IBM″

within the <Customer> sub-element. However, the document might also

have the string ″IBM″ in a <Comment> sub-element or as part of the name

of a product. A structural text search looks for the string only in the

element that is specified. In this example, only the documents that have

″IBM″ in the </Order/Customer/Name> sub-element are found; any

document that has ″IBM″ in other elements but not in the

</Order/Customer/Name> sub-element is not returned.

Full text search

Searches text strings anywhere in the document structure, without regard

to elements or attributes. Using the previous example, all documents that

contain the string ″IBM″ would be returned, regardless of where the string

occurs.

Enabling an XML column for the DB2 UDB Text Extender

In an XML-enabled server, you enable the DB2 UDB Text Extender to search the

content of an XML-enabled column.

1. See the install.txt file on the DB2 UDB Extenders™ CD for information on

installing the Text Extender.

86 XML Extender Administration and Programming

2. Run the txstart command:

v On UNIX® operating systems, enter the command from the instance owner’s

command prompt.

v On Windows NT, enter the command from the command window where

DB2INSTANCE is specified.
3. Enable the database for the DB2 UDB Text Extender.

From the db2tx command prompt, type:

enable server for db2text

4. Enable the columns in the XML table for the DB2 UDB Text Extender, and

define the data types of the XML document, the language, code pages, and

other information about the column.

v For the VARCHAR column XVARCHAR, type:

db2tx enable text column order xvarchar function

db2xml.varchartovarchar handle varcharhandle ccsid 1252

language us_english format xml indextype precise

 indexproperty sections_enabled

documentmodel (Order) updateindex update

v For the CLOB column XCLOB, type:

db2tx enable text column order xclob

function db2xml.clob handle clobhandle ccsid 1252

language us_english indextype precise updateindex update

5. Check the status of the index.

v For the XVARCHAR column, type:

get index status order handle varcharhandle

v For the XCLOB column, type:

get index status order handle clobhandle

6. Define the XML document model in a document model initialization file called

desmodel.ini. This file is located in the /db2tx/txins000 directory on UNIX

and in the /instance/db2tx/txins000 directory on Windows NT. For example,

for the textmodel.ini:

;list of document models

[MODELS]

modelname=Order

; an ’Order’ document model definition

; left side = section name identifier

; right side = section name tag

[Order]

Order = /Order

Order/Customer/Name = /Order/Customer/Name

Order/Customer/Email = /Order/Customer/Email

Order/Part/Shipment/ShipMode = /Order/Part/Shipment/ShipMode

Searching for text using the DB2 UDB Net Search Extender

To search for text using the DB2 UDB Net Search Extender, you create a query that

specifies the element or attribute for which you want to search. The DB2 UDB Net

Search Extender then uses the query to search the element content or attribute

values.

For example enter the following statements in a DB2 UDB command window to

use the DB2 UDB Net Search Extender to search the text of an XML document:

Chapter 3. XML columns 87

select xvarchar from order where db2tx.contains(varcharhandle,

 ’model Order section(Order/Customer/Name) "Motors"’)=1

select xclob from order where db2tx.contains(clobhandle,

 ’model Order section(Order/Customer/Name) "Motors"’)=1

The Net Search Extender Contains() UDF searches that search the text of an XML

document.

This example does not contain all of the steps that are required to use the DB2

UDB Net Search Extender to search column data. To learn about the Net Search

Extender search concepts and capability, see DB2 Universal Database Extenders for

z/OS: Net Search Extender Administration and Programming.

Deleting XML documents

 Use the SQL DELETE statement to delete the row containing an XML document

from an XML column. You can specify a WHERE clause to delete specific

documents.

For example, the following statement deletes all documents that have a value for

<ExtendedPrice> greater than 2500.00:

DELETE from sales_tab

 WHERE invoice_num in

 (SELECT invoice_num from part_side_tab

 WHERE price > 2500.00)

The corresponding rows in the side tables are automatically deleted.

 Related concepts:

v “XML columns as a storage and access method” on page 73

 Related tasks:

v “Managing data in XML columns” on page 73

Limitations when invoking functions from Java Database (JDBC)

 When using parameter markers in functions, a JDBC restriction requires that the

parameter marker for the function must be cast to the data type of the column into

which the returned data will be inserted. The function selection logic does not

know what data type the argument might turn out to be, and it cannot resolve the

reference.

For example, JDBC cannot resolve the following code:

DB2XML.XMLdefault_casting_function(length)

You can use the CAST specification to provide a type for the parameter marker,

such as VARCHAR, and then the function selection logic can proceed:

DB2XML.XMLdefault_casting_function(CAST(? AS cast_type(length))

Example 1: In the following example, the parameter marker is cast as VARCHAR.

The parameter being passed is an XML document, which is cast as

VARCHAR(1000) and inserted into the column ORDER.

String query = "insert into sales_tab(invoice_num, sales_person, order) values

 (?,?,DB2XML.XMLVarchar(cast (? as varchar(1000))))";

88 XML Extender Administration and Programming

Example 2: In the following example, the parameter marker is cast as VARCHAR.

The parameter being passed is a file name and its contents are converted to

VARCHAR and inserted into the column ORDER.

String query = "insert into sales_tab(invoice_num, sales_person, order) values

 (?,?,DB2XML.XMLVarcharfromFILE(cast (? as varchar(1000))))";

Chapter 3. XML columns 89

90 XML Extender Administration and Programming

Chapter 4. Managing data in XML collections

XML collections as a storage and access method

 Relational data is either decomposed from incoming XML documents or used to

compose outgoing XML documents. Decomposed data is the untagged content of an

XML document stored in one or more database tables. Or, XML documents are

composed from existing data in one or more database tables. If your data is to be

shared with other applications, you might want to be able to compose and

decompose incoming and outgoing XML documents and manage the data as

necessary to take advantage of the relational capabilities of DB2. This type of XML

document storage is called XML collection.

An example of an XML collection is shown in Figure 10.

 The XML collection is defined in a DAD file, which specifies how elements and

attributes are mapped to one or more relational tables. The collection is a set of

columns, associated with a DAD file, that contain the data in a particular XML

document or set of XML documents. You can define a collection name by enabling

it, and then refer to it by name when issuing a stored procedure to compose or

decompose XML documents. It is called an enabled XML collection. The collection

is given a name so that it is easily run with stored procedures that compose and

decompose the XML documents.

When you define a collection in the DAD file, you use one of two types of

mapping schemes, SQL mapping or RDB_node mapping that define the tables,

columns, and conditions used to associate XML data with DB2 UDB tables. SQL

mapping uses SQL SELECT statements to define the DB2 UDB tables and

conditions used for the collection. RDB_node mapping uses an XPath-based

relational database node, or RDB_node, which has child elements.

Stored procedures are provided to compose or decompose XML documents. Stored

procedure names are qualified by DB2XML, which is the schema name of XML

Extender.

DB2

Collection

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

XML document

Figure 10. Storing documents as untagged data in DB2 UDB tables

© Copyright IBM Corp. 1999, 2004 91

Managing data in XML collections

 An XML collection is a set of relational tables that contain data that is mapped to

XML documents. This access and storage method lets you compose an XML

document from existing data, decompose an XML document, and use XML as an

interchange method.

The relational tables that make up the collection can be new tables, or existing

tables that have data that is to be used with XML Extender to compose XML

documents for your applications. Column data in these tables does not contain

XML tags; it contains the content and values that are associated with elements and

attributes, respectively. You use stored procedures to store, retrieve, update, search,

and delete XML collection data.

You can increase the CLOB sizes for the results of the stored procedures.

Preparing to compose XML documents from DB2 data

Composition is the generation of a set of XML documents from relational data in

an XML collection. You can compose XML documents using stored procedures. To

use these stored procedures, create a document access definition (DAD) file. A

DAD file specifies the mapping between the XML document and the DB2 table

structure. The stored procedures use the DAD file to compose the XML document.

 Procedure::

 Before you begin composing XML documents:

1. Map the structure of the XML document to the relational tables that contain the

contents of the element and attribute values.

2. Select a mapping method: SQL mapping or RDB_node mapping.

3. Prepare the DAD file.

The XML Extender provides four stored procedures, dxxGenXML(),

dxxGenXMLCLOB(), dxxRetrieveXML(), and dxxRetrieveXMLCLOB to compose

XML documents. The frequency with which you plan to update the XML

document is a key factor in selecting the stored procedure that you will use.

Composing XML documents that will be updated occasionally

If your document will be updated only occasionally, use the dxxGenXML stored

procedure to compose the document. You do not have to enable a collection to use

this stored procedure. The stored procedure uses a DAD file instead.

The dxxGenXML stored procedure constructs XML documents using data that is

stored in XML collection tables, which are specified by the <Xcollection> element

in the DAD file. This stored procedure inserts each XML document as a row into a

result table. You can also open a cursor on the result table and fetch the result set.

The result table must be created by the application and always has at least one

column of VARCHAR, CLOB, XMLVARCHAR, or XMLCLOB type.

If the value of the validation element in the DAD is YES, the application must also

create a validation column of type INTEGER in the result table. You can specify

any name for the validate column as long as its data type is integer. The default

column value for a column with a data type of integer is 0. You do not have to set

the value. XML Extender will set the value to 1 if the document is valid, otherwise

it is 0.

92 XML Extender Administration and Programming

The stored procedure dxxGenXML also allows you to specify the maximum

number of rows that are to be generated in the result table. This shortens

processing time. The stored procedure returns the actual number of rows in the

table and any return codes and messages.

The corresponding stored procedure for decomposition is dxxShredXML; it also

takes the DAD as the input parameter and does not require that the XML

collection be enabled.

Procedure:

To compose an XML collection using the dxxGenXML stored procedure, embed a

stored procedure call in your application using the following stored procedure

declaration:

dxxGenXML(CLOB(100K) DAD, /* input */

 char(32) resultTabName, /* input */

 char(30) result_column, /* input */

 integer overrideType, /* input */

 varchar(1024) override, /* input */

 integer maxRows, /* input */

 integer numRows, /* output */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Example: The following example composes an XML document:

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE is CLOB(100K) dad; /* DAD */

EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD when running from USS */

 /* to ensure that DB2 UDB converts the */

 /* code page correctly*/

char result_tab[32]; /* name of the result table */

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL */

char override[2]; /* override, will set to NULL*/

short overrideType; /* defined in dxx.h */

short max_row; /* maximum number of rows */

short num_row; /* actual number of rows */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short dad_ind;

short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;

short numrow_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* create table */

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize the DAD CLOB object. */

Chapter 4. Managing data in XML collections 93

file_handle = fopen("/dxx/samples/dad

 /getstart_xcollection.dad", "r");

if (file_handle != NULL) {

 file_length = fread ((void *) &dad.data,

 1, FILE_SIZE, file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file

 /dxx/samples/dad

 /getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n",);

 rc = -1;

 goto exit;

}

/* initialize host variable and indicators */

strcpy(result_tab,"xml_order_tab");

strcpy(result_colname, "xmlorder")

valid_colname = ’\0’;

override[0] = ’\0’;

overrideType = NO_OVERRIDE;

max_row = 500;

num_row = 0;

returnCode = 0;

msg_txt[0] = ’\0’;

dad_ind = 0;

rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = -1;

ovtype_ind = 0;

maxrow_ind = 0;

numrow_ind = -1;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.dxxGenXML"

 (:dad:dad_ind;

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

After the stored procedure is called, the result table contains 250 rows because the

SQL query specified in the DAD file generated 250 XML documents.

Composing XML documents that will be updated frequently

If your document will be updated frequently, use the dxxRetrieveXML stored

procedure to compose the document. Because the same tasks are repeated,

improved performance is important.

94 XML Extender Administration and Programming

|

The dxxRetrieveXML stored procedure works in the same way as the dxxGenXML

stored procedure, except that it takes the name of an enabled XML collection

instead of a DAD file. When an XML collection is enabled, a DAD file is stored in

the XML_USAGE table. Therefore, XML Extender retrieves the DAD file and uses

it to compose the document in the same way as the dxxGenXML stored procedure.

The dxxRetrieveXML stored procedure allows the same DAD file to be used for

both composition and decomposition.

The corresponding stored procedure for decomposition is dxxInsertXML; it also

takes the name of an enabled XML collection.

Procedure:

To compose an XML collection using the dxxRetrieveXML stored procedure, embed

a stored procedure call in your application using the following stored procedure

declaration:

dxxRetrieveXML(char(32) collectionName, /* input */

 varchar(32) resultTabName, /* input */

 varchar(128) resultColName,

 varchar(128) resultValidCol /*input */

 integer overrideType, /* input */

 varchar_value override, /* input */

 integer maxRows, /* input */

 integer numRows, /* output */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Example: The following example is of a call to dxxRetrieveXML(). It assumes that a

result table is created with the name of XML_ORDER_TAB and that the table has

one column of XMLVARCHAR type.

#include "dxx.h"

#include "dxxrc.h"

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char collectionName[32] ; /*name of an XML collection */

 char result_tab [32] ;/*name of the result table */

 char result_colname [32] ;/*name of the result column */

 char valid_colname [32] ;

 /*name of the valid column, will set to NULL*/

 char override [2] ;/*override,will set to NULL*/

 short overrideType;/*defined in dxx.h */

 short max_row;/*maximum number of rows */

 short num_row;/*actual number of rows */

 long returnCode;/*return error code */

 char returnMsg [1024] ;/*error message text */

 short collectionName_ind;

 short rtab_ind;

 short rcol_ind;

 short vcol_ind;

 short ovtype_ind;

 short ov_ind;

 short maxrow_ind;

 short numrow_ind;

 short returnCode_ind;

 short returnMsg_ind;

 EXEC SQL END DECLARE SECTION;

 /* create table */

 EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

Chapter 4. Managing data in XML collections 95

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#

/* initialize host variable and indicators */

 strcpy(collection,"sales_ord");

 strcpy(result_tab,"xmlorder");

 override[0] = ’\0’;

 overrideType = NO_OVERRIDE;

 max_row = 500;

 num_row = 0;

 returnCode = 0;

 msg_txt[0] = ’\0’;

 collectionName_ind = 0;

 rtab_ind = 0;

 rcol_ind = 0;

 vcol_ind = -1;

 ov_ind = -1;

 ovtype_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 returnCode_ind = -1;

 returnMsg_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL

 db2xml.dxxRetrieveXML(:collectionName:collectionName_ind;

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

 if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

 }

 Related concepts:

v “XML collections as a storage and access method” on page 91

v “Mapping schemes for XML collections” on page 104

v “Location paths” on page 112

v “DAD files for XML collections” on page 169

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Composing XML collections by using RDB_node mapping” on page 63

v “Stylesheets for an XML collection” on page 112

v “Decomposing an XML collection by using RDB_node mapping” on page 65

v “Updating, deleting, and retrieving data in XML collections” on page 101

v “Searching XML collections” on page 103

Decomposing XML documents into DB2 UDB data

 To decompose an XML document is to break down the data inside of an XML

document and store it in relational tables. The XML Extender provides stored

procedures to decompose XML data from source XML documents into relational

tables. To use these stored procedures, you must create a DAD file, which specifies

the mapping between the XML document and DB2 UDB table structure. The stored

procedures use the DAD file to decompose the XML document.

96 XML Extender Administration and Programming

#
#
#
#
#

#
#
#
#
#

Enabling an XML collection for decomposition

In most cases, you need to enable an XML collection before using the stored

procedures. Cases where you must enable the collections are:

v When decomposing XML documents into new tables, an XML collection must be

enabled because all tables in the XML collection are created by the XML

Extender when the collection is enabled.

v When keeping the sequence of elements and attributes that have multiple

occurrence is important. The XML Extender preserves only the sequence order of

elements or attributes of multiple occurrence for tables that are created when a

collection is enabled. When XML documents are decomposed into existing

relational tables, the sequence order is not guaranteed to be preserved.

See the section about the dxxadm administration command for information about

the enable_collection option.

If you want to pass the DAD file when the tables already exist in your database,

you do not need to enable an XML collection.

Before you decompose an XML document into DB2 UDB data:

1. Map the structure of the XML document to the relational tables that contain the

contents of the elements and attributes values.

2. Prepare the DAD file, using RDB_node mapping.

3. Optional: Enable the XML collection.

 Procedure::

 Use one of the two stored procedures provided by DB2 UDB XML Extender to

decompose XML documents, dxxShredXML() or dxxInsertXML.

dxxShredXML()

This stored procedure is used for applications that do occasional updates

or for applications that do not want the overhead of administering the

XML data. The stored procedure dxxShredXML() does not required an

enabled collection; it uses a DAD file instead.

 The stored procedure dxxShredXML() takes two input parameters, a DAD

file and the XML document that is to be decomposed; it returns two output

parameters: a return code and a return message. It inserts data from an

XML document into an XML collection according to the <Xcollection>

specification in the input DAD file. The dxxShredXML() stored procedure

then decomposes the XML document, and inserts untagged XML data into

the tables specified in the DAD file. The tables that are used in the

<Xcollection> of the DAD file are assumed to exist, and the columns are

assumed to meet the data types specified in the DAD mapping. If this is

not true, an error message is returned.

 The corresponding stored procedure for composition is dxxGenXML(); it

also takes the DAD as the input parameter and does not require that the

XML collection be enabled.

 To decompose an XML collection with dxxShredXML()

 Embed a stored procedure call in your application using the following

stored procedure declaration:

Chapter 4. Managing data in XML collections 97

dxxShredXML(CLOB(100K) DAD, /* input */

 CLOB(1M) xmlobj, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Example: The following example is a call to dxxShredXML():

 #include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE is CLOB(100K) dad; /* DAD */

EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD when running */

 /* from USS to ensure that DB2 UDB converts the */

 /* code page correctly */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */

EXEC SQL DECLARE :xmlDoc VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD when running */

 /* from USS to ensure that DB2 UDB converts the */

 /* code page correctly */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short dad_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* initialize the DAD CLOB object. */

file_handle = fopen("/dxx/samples

/dad/getstart_xcollection.dad", "r");

if (file_handle != NULL) {

 file_length = fread ((void *) &dad.data, 1, FILE_SIZE,

 file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n");

 rc = -1;

 goto exit;

}

/* Initialize the XML CLOB object. */

 file_handle = fopen("/dxx/samples

/xml/getstart_xcollection.xml", "r");

 if (file_handle != NULL) {

 file_length = fread ((void *) &xmlDoc.data, 1,

 FILE_SIZE, file_handle);

 if (file_length == 0) {

 printf ("Error reading xml file

 getstart_xcollection.xml \n");

 rc = -1;

 goto exit;

 } else

 xmlDoc.length = file_length;

 }

 else {

98 XML Extender Administration and Programming

printf("Error opening xml file \n");

 rc = -1;

 goto exit;

 }

/* initialize host variable and indicators */

returnCode = 0;

msg_txt[0] = ’\0’;

dad_ind = 0;

xmlDoc_ind = 0;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXSHRED" (:dad:dad_ind;

 :xmlDoc:xmlDoc_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

dxxInsertXML()

This stored procedure is used for applications that make regular updates.

The stored procedure dxxInsertXML() works the same as dxxShredXML(),

except that dxxInsertXML() takes an enabled XML collection as its first

input parameter.

 The stored procedure dxxInsertXML() inserts data from an XML document

into an enabled XML collection, which is associated with a DAD file. The

DAD file contains specifications for the collection tables and the mapping.

The collection tables are checked or created according to the specifications

in the <Xcollection>. The stored procedure dxxInsertXML() then

decomposes the XML document according to the mapping, and it inserts

untagged XML data into the tables of the named XML collection.

 The corresponding stored procedure for composition is dxxRetrieveXML();

it also takes the name of an enabled XML collection.

 Procedure:

 To decompose an XML collection: dxxInsertXML():

 Embed a stored procedure call in your application using the following

stored procedure declaration:

dxxInsertXML(char(collectionName

 32) collectionName, /* input */

 CLOB(1M) xmlobj, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Example: The following is an example of a call to dxxInsertXML():

 #include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */

Chapter 4. Managing data in XML collections 99

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short collectionName_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* initialize the DAD CLOB object. */

file_handle = fopen("/dxx_install/samples/db2xml/dad

/getstart_xcollection.dad", "r");

 if (file_handle != NULL) {

 file_length = fread ((void *) &dad.data, 1, FILE_SIZE,

 file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n");

 rc = -1;

 goto exit;

}

/* initialize host variable and indicators */

strcpy(collectionName, "sales_ord");

returnCode = 0;

msg_txt[0] = ’\0’;

collectionName_ind = 0;

xmlDoc_ind = 0;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "db2xml.DXXINSERTXML"

 (:collection_name:collection_name_ind,

 :xmlDoc:xmlDoc_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

Decomposition table size limits

Decomposition uses RDB_node mapping to specify how an XML document is

decomposed into DB2 UDB tables by extracting the element and attribute values

and storing them in table rows. The values from each XML document are stored in

one or more DB2 UDB tables. Each table can have a maximum of 10240 rows

decomposed from each document.

100 XML Extender Administration and Programming

|

For example, if an XML document is decomposed into five tables, each of the five

tables can have up to 10240 rows for that particular document. If the table has

rows for multiple documents, it can have up to 1024 rows for each document.

Using multiple-occurring elements (elements with location paths that can occur

more than once in the XML structure) affects the number of rows . For example, a

document that contains an element <Part> that occurs 20 times, might be

decomposed as 20 rows in a table. When using multiple occurring elements,

consider that a maximum of 1024 rows can be decomposed into one table from a

single document.

 Related concepts:

v “XML Extenders decomposition stored procedures” on page 214

 Related tasks:

v “Decomposing an XML collection by using RDB_node mapping” on page 65

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “dxxInsertXML() stored procedure” on page 217

v “dxxShredXML() stored procedure” on page 214

Updating, deleting, and retrieving data in XML collections

 You can update, delete, search, and retrieve XML collections. However, the purpose

of using an XML collection is to store or retrieve untagged, pure data in database

tables. The data in existing database tables has nothing to do with any incoming

XML documents; update, delete, and search operations consist of normal SQL

access to these tables.

The XML Extender provides the ability to perform operations on the data from an

XML collection view. You can UPDATE and DELETE SQL statements to modify the

data that is used for composing XML documents, and therefore, update the XML

collection. Performing SQL operations on the collection tables affects the generated

documents.

 Restrictions:

 v To update a document, do not delete a row containing the primary key of the

table, which is the foreign key row of the other collection tables. When the

primary key and foreign key row is deleted, the document is deleted.

v To replace or delete elements and attribute values, you can delete and insert

rows in lower-level tables without deleting the document.

v To delete a document, delete the row that composes the top element_node

specified in the DAD.

Updating data in an XML collection

The XML Extender allows you to update untagged data that is stored in XML

collection tables. By updating XML collection table values, you are updating the

text of an XML element, or the value of an XML attribute. Updates can also delete

an instance of data from multiple-occurring elements or attributes.

From an SQL point of view, changing the value of the element or attribute is an

update operation, and deleting an instance of an element or attribute is a delete

Chapter 4. Managing data in XML collections 101

operation. From an XML point of view, if the element text or attribute value of the

root element_node exists, the XML document still exists and is, therefore, an

update operation. SQL operations on collection tables affect documents that will be

generated from the tables.

Requirements: When you update data in an XML collection, observe the following

rules:

v Specify the primary-foreign key relationship among the collection tables when

the existing tables have this relationship. If they do not, ensure that there are

columns that can be joined.

v Include the join condition that is specified in the DAD file:

– For SQL mapping, include the join condition in the <SQL_stmt> element.

– For RDB_node mapping, include the join condition in the top <condition>

element of the root element node.

Updating element and attribute values

In an XML collection, element text and attribute values are all mapped to columns

in database tables. Regardless of whether the column data previously exists or is

decomposed from incoming XML documents, you replace the data using the

normal SQL update technique.

To update an element or attribute value, specify a WHERE clause in the SQL

UPDATE statement that contains the join condition that is specified in the DAD

file.

Example:

UPDATE SHIP_TAB

 set MODE = ’BOAT’

 WHERE MODE=’AIR’ AND PART_KEY in

 (SELECT PART_KEY from PART_TAB WHERE ORDER_KEY=68)

The <ShipMode> element value is updated from AIR to BOAT in the SHIP_TAB

table, where the key is 68.

Deleting element and attribute instances

To update composed XML documents by eliminating multiple-occurring elements

or attributes, delete a row containing the field value that corresponds to the

element or attribute value, using the WHERE clause. If you do not delete the row

that contains the values for the top element_node, deleting element values is

considered an update of the XML document.

For example, in the following DELETE statement, you are deleting a <shipment>

element by specifying a unique value of one of its sub-elements.

DELETE from SHIP_TAB

 WHERE DATE=’1999-04-12’

Specifying a DATE value deletes the row that matches this value. The composed

document originally contained two <shipment> elements, but now contains one.

Deleting an XML document from an XML collection

You can delete an XML document that is composed from a collection. This means

that if you have an XML collection that composes multiple XML documents, you

can delete one of these composed documents. Performing SQL operations on the

collection tables affects the generated documents.

102 XML Extender Administration and Programming

Procedure:

To delete the document, delete a row in the table that composes the top

element_node that is specified in the DAD file. This table contains the primary key

for the top-level collection table and the foreign key for the lower-level tables.

Deleting the document with this method works only if the primary-key and

foreign-key constraints are fully specified in the SQL and if the relationship of the

tables shown in the DAD match those constraints exactly.

Example:

The following DELETE statement specifies the value of the primary key column.

DELETE from order_tab

 WHERE order_key=1

ORDER_KEY is the primary key in the table ORDER_TAB, which is the top-level

table as specified in the DAD. Deleting this row deletes one XML document that is

generated during composition. Therefore, from the XML point of view, one XML

document is deleted from the XML collection.

Retrieving XML documents from an XML collection

Retrieving XML documents from an XML collection is similar to composing

documents from the collection.

DAD file consideration: When you decompose XML documents in an XML

collection, you can lose the order of multiple-occurring elements and attribute

values, unless you specify the order in the DAD file. To preserve this order, you

should use the RDB_node mapping scheme. This mapping scheme allows you to

specify an orderBy attribute for the table containing the root element in its

RDB_node.

Searching XML collections

This section describes searching an XML collection in terms of generating XML

documents using search criteria, and searching for decomposed XML data.

Composing XML documents using search criteria

This task is the same as composition using a condition.

Procedure:

You can specify the search criteria using the following search criteria:

v Specify the condition in the text_node and attribute_node of the DAD file

v Specify the overwrite parameter when using the dxxGenXML() and

dxxRetrieveXML() stored procedures.

For example, if you enabled an XML collection, sales_ord, using the DAD file,

order.dad, but you now want to override the price using form data derived

from the Web, you can override the value of the <SQL_stmt> DAD element, as

follows:

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

 ...

 EXEC SQL END DECLARE SECTION;

 float price_value;

Chapter 4. Managing data in XML collections 103

/* create table */

 EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

 /* initialize host variable and indicators */

 strcpy(collection,"sales_ord");

 strcpy(result_tab,"xml_order_tab");

 overrideType = SQL_OVERRIDE;

 max_row = 20;

 num_row = 0;

 returnCode = 0;

 msg_txt[0] = ’\0’;

 override_ind = 0;

 overrideType_ind = 0;

 rtab_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 returnCode_ind = -1;

 returnMsg_ind = -1;

 /* get the price_value from some place, such as form data */

 price_value = 1000.00 /* for example*/

 /* specify the overwrite */

 sprintf(overwrite,

 "SELECT o.order_key, customer, p.part_key, quantity, price,

 tax, ship_id, date, mode

 FROM order_tab o, part_tab p,

 table

(select db2xml.generate_unique()

 as ship_id, date, mode from ship_tab) s

 WHERE p.price > %d and s.date >’1996-06-01’ AND

 p.order_key = o.order_key and s.part_key = p.part_key",

 price_value);

 /* Call the store procedure */

 EXEC SQL CALL db2xml.dxxRetrieve(:collection:collection_ind,

 :result_tab:rtab_ind,

 :overrideType:overrideType_ind,:overwrite:overwrite_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

The condition of price > 2500.00 in order.dad is overridden by price > ?, where ?

is based on the input variable price_value.

Searching for decomposed XML data

You can use normal SQL query operations to search collection tables. You can join

collection tables, or use subqueries, and then do a structural-text search on text

columns. Apply the results of the structural search to retrieve or generate the

specified XML document.

Mapping schemes for XML collections

 If you are using an XML collection, you must select a mapping scheme, which

specifies how XML data is represented in a relational database. Because XML

collections must match the hierarchical structure of XML documents with a

relational structure for relational databases, you should understand how the two

structures compare. Figure 11 on page 105 shows how the hierarchical structure can

be mapped to relational table columns.

104 XML Extender Administration and Programming

|

The XML Extender uses a mapping scheme when composing or decomposing XML

documents that are located in multiple relational tables. The XML Extender

provides a wizard that assists you in creating the DAD file. However, before you

create the DAD file, you must think about how your XML data is mapped to the

XML collection.

 Types of mapping schemes:

 Use <Xcollection> to specify the mapping scheme in the DAD file. The XML

Extender provides two types of mapping schemes: SQL mapping and Relational

Database (RDB_node) mapping.

SQL mapping

This method allows direct mapping from relational data to XML

documents through a single SQL statement. SQL mapping is used for

composition only. The content of the <SQL_stmt> element must be a valid

SQL statement. The <SQL_stmt> element specifies columns in the SELECT

clause that are mapped to XML elements or attributes later in the DAD.

When defined for composing XML documents, the column names in the

SELECT clause of the SQL statement are used to associate the value of an

attribute_node or a content of text_node with columns that have the same

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure 11. XML document structured mapped to relational table columns

Chapter 4. Managing data in XML collections 105

name_attribute. The FROM clause defines the tables containing the data; the

WHERE clause specifies the join and search condition.

 SQL mapping gives DB2® users the power to map the data using SQL.

When using SQL mapping, you must be able to join all tables in one

SELECT statement to form a query. If one SQL statement is not sufficient,

consider using RDB_node mapping. To tie all tables together, the primary

key and foreign key relationship is recommended among these tables.

RDB_node mapping

Defines the location of the content of an XML element or the value of an

XML attribute so that XML Extender can determine where to store or

retrieve the XML data.

 This method uses XML Extender-provided RDB_node, which contains one

or more node definitions for tables, optional columns, and optional

conditions. The <table> and <column> elements in the DAD define how

the XML data is to be stored in the database. The condition specifies the

criteria for selecting XML data or the way to join the XML collection tables.

 To define a mapping scheme, you must create a DAD file with an <Xcollection>

element. Figure 12 on page 107 shows a fragment of a sample DAD file with SQL

mapping for an XML collection, which composes a set of XML documents from

data in three relational tables.

106 XML Extender Administration and Programming

The XML Extender provides several stored procedures that manage data in an

XML collection. These stored procedures support both types of mapping.

 Related concepts:

v “DAD files for XML collections” on page 169

v “Requirements for using SQL mapping” on page 107

v “Requirements for RDB_Node mapping” on page 109

 Related tasks:

v “Composing XML documents by using SQL mapping” on page 60

v “Composing XML collections by using RDB_node mapping” on page 63

v “Decomposing an XML collection by using RDB_node mapping” on page 65

Requirements for using SQL mapping

Requirements when using SQL mapping

 In this mapping scheme, you must specify the <SQL_stmt> element inside

the DAD <Xcollection> element. The <SQL_stmt> must contain a single

SQL statement that can join multiple relational tables with the query

predicate. In addition, the following clauses are required:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

 <dtdid>dxx_install/samples/dad/getstart.dtd</dtdid>

 <validation>YES</validation>

 <Xcollection>

 <SQL_stmt>

 SELECT o.order_key, customer, p.part_key, quantity, price, tax, date,

 ship_id, mode, comment

 FROM order_tab o, part_tab p,

 table(select db2xml.generate_unique()

 as ship_id, date, mode, from ship_tab)

 WHERE p.price > 2500.00 and s.date > "1996-06-01" AND

 p.order_key = o.order_key and s.part_key = p.part_key

 </SQL_stmt>

 <prolog>?xml version="1.0"?</prolog>

 <doctype>!DOCTYPE DAD SYSTEM

 "dxx_install/samples/db2xml/dtd/getstart.dtd

 "</doctype>

 <root_node>

 <element_node name="Order">

 <attribute_node name="key">

 <column name="order_key"/>

 </attribute_node>

 <element_node name="Customer">

 <text_node>

 <column name="customer"/>

 </text_node>

 <element_node>

 ...

 </element_node><!-end Part->

 </element_node><!-end Order->

 </root_node>

 </Xcollection>

</DAD>

Figure 12. SQL mapping scheme

Chapter 4. Managing data in XML collections 107

v SELECT clause

– Ensure that the name of the column is unique. If two tables have the

same column name, use the AS keyword to create an alias name for

one of them.

– Group columns of the same table together and order the tables

according to the tree level as they map to the hierarchical structure of

your XML document. The first column in each column grouping is an

object ID. In the SELECT clause, the columns of the higher-level

tables must precede the columns of lower-level tables. The following

example demonstrates the hierarchical relationship among tables:

SELECT o.order_key, customer, p.part_key, quantity, price, tax,

 ship_id, date, mode

In this example, the order_key and customer columns from the

ORDER_TAB table have the highest relational level because they are

higher on the hierarchical tree of the XML document. The ship_id,

date, and mode columns from the SHIP_TAB table are at the lowest

relational level.

– Use a single-column candidate key to begin each level. If such a key

is not available in a table, the query should generate one for that table

using a table expression and the generate_unique()user-defined

function. In the above example, the o.order_key is the primary key

for ORDER_TAB, and the part_key is the primary key of PART_TAB.

They appear at the beginning of their own group of columns that are

to be selected. The ship_id is generated as a primary key because the

SHIP_TAB table does not have a primary key. ship_id is listed as the

first column for the SHIP_TAB table group. Use the FROM clause to

generate the primary key column, as shown in the following example.
v FROM clause

– Use a table expression and the generate_unique()user-defined function

to generate a single key for tables that do not have a primary single

key. For example:

FROM order_tab as o, part_tab as p,

 table(select

 db2xml.generate_unique() as

 ship_id, date, mode, part key from ship_tab) as s

In this example, a single column candidate key is generated with the

generate_unique() function and given an alias named ship_id.

– Use an alias name when it is necessary to make a column distinct. For

example, you could use o for columns in the ORDER_TAB table, p for

columns in the PART_TAB table, and s for columns in the SHIP_TAB

table.
v WHERE clause

– Specify a primary and foreign key relationship as the join condition

that ties tables in the collection together. For example:

WHERE p.price > 2500.00 AND s.date > "1996-06-01" AND

 p.order_key = o.order_key AND s.part_key = p.part_key

– Specify any other search condition in the predicate. Any valid

predicate can be used.
v ORDER BY clause

– Define the ORDER BY clause at the end of the SQL_stmt. Ensure that

there is nothing after the column names such as ASC or DESC.

108 XML Extender Administration and Programming

– Ensure that the column names match the column names in the

SELECT clause.

– List all object ID’s in the same relative order as they appear in the

SELECT clause.

– An identifier can be generated using a table expression and the

generate_unique() function or a user defined function.

– Maintain the top-down order of the hierarchy of the entities. The first

column specified in the ORDER BY clause must be the first column

listed for each entity. Keeping the order ensures that the XML

documents to be generated do not contain incorrect duplicates.

– Do not qualify the columns in the ORDER BY clause with a schema

or table name.

The <SQL_stmt> element is powerful because you can specify any

predicate in your WHERE clause, as long as the expression in the predicate

uses the columns in the tables.

 Related reference:

v Appendix A, “Samples,” on page 293

Requirements for RDB_Node mapping

 When using RDB_Node as your mapping method, do not use the

<SQL_stmt>element in the <Xcollection> element of the DAD file. Instead, use the

RDB_node element as a child of the top element_node and of each attribute_node

and text_node.

v RDB_node for the top element_node

The top element_node in the DAD file represents the root element of the XML

document. Specify an RDB_node for the top element_node as follows:

– Specify all tables that are associated with the XML collection. For example,

the following mapping specifies three tables in the <RDB_node> of

the<Order> element node, which is the top element node:

<element_node name="Order">

 <RDB_node>

 <table name="order_tab"/>

 <table name="part_tab"/>

 <table name="ship_tab"/>

 <condition>

 order_tab.order_key = part_tab.order_key AND

 part_tab.part_key = ship_tab.part_key

 </condition>

 </RDB_node>

The condition element can be empty or missing if there is only one table in

the collection.

– Condition elements can reference a column name an unlimited number of

times.

– If you are decomposing, or enabling, the XML collection specified by the

DAD file, you must specify a primary key for each table. The primary key

can consist of a single column or multiple columns, called a composite key.

Specify the primary key by adding an attribute key to the table element of the

RDB_node. When you supply a composite key, the key attribute will be

specified by the names of key columns separated by a space. For example:

 <table name="part_tab" key="part_key price"/>

Chapter 4. Managing data in XML collections 109

The information specified for decomposition is ignored if the same DAD is

used for composition.

– Use the orderBy attribute to recompose XML documents containing elements

or attributes with multiple occurrence back to their original structure. This

attribute allows you to specify the name of a column that will be the key

used to preserve the order of the document. The orderBy attribute is part of

the table element in the DAD file, and it is an optional attribute.

Spell out the table name and the column name in the <table>tag.

v RDB_node for each attribute_node and text_node

The XML Extender needs to know from where in the database to retrieve the

data. XML Extender also needs to know where in the database to put the

content from an XML document. You must specify an RDB_node for each

attribute node and text node. You must also specify the table and column names;

the condition value is optional.

1. Specify the name of the table containing the column data. The table name

must be included in the RDB_node of the top element_node. In this example,

for text_node of element <Price>, the table is specified as PART_TAB.

<element_node name="Price">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="price"/>

 <condition>

 price > 2500.00

 </condition>

 </RDB_node>

 </text_node>

</element_node>

2. Specify the name of the column that contains the data for the element text. In

the previous example, the column is specified as PRICE.

3. Specify a query condition if you want XML documents to be generated using

that condition. Only the data meeting the condition is in the generated XML

documents. The condition must be a valid WHERE clause. In the example

above, the condition is specified as price > 2500.00, so only rows where the

price is over 2500 will be included in the XML documents.

4. If you are decomposing a document, or enabling the XML collection specified

by the DAD file, you must specify the column type for each attribute node

and text node. By specifying the column type for each attribute node and

text node, you ensure that he correct data type for each column when new

tables are created during the enabling of an XML collection. Column types

are specified by adding the attribute type to the column element. For

example:

<column name="order_key" type="integer"/>

The column type specified when decomposing a document is ignored for

composition.
v Maintain the top-down order of the hierarchy of the entities. Ensure that the

element nodes are nested properly so that XML Extender understands the

relationship between the elements when composing or decomposing documents.

For example, the following DAD file does not nest Shipment inside of Part:

 <element_node name="Part">

 ...

 <element_node name="ExtendedPrice">

 ...

 </element_node>

 ...

110 XML Extender Administration and Programming

</element_node> <!-- end of element Part -->

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 ...

 </element_node>

 <element_node name="ShipMode">

 ...

 </element_node>

 </element_node> <!-- end of element Shipment-->

This DAD file produces an XML documents in which the Part and Shipment

elements are siblings.

 <Part color="black ">

 <key>68</key>

 <Quantity>36</Quantity>

 <ExtendedPrice>34850.16</ExtendedPrice>

 <Tax>6.000000e-2</Tax>

 </Part>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>BOAT </ShipMode>

 </Shipment>

The following code shows the shipment element nested inside the Part element

in the DAD file.

 <element_node name="Part">

 ...

 <element_node name="ExtendedPrice">

 ...

 </element_node>

 ...

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 ...

 </element_node>

 <element_node name="ShipMode">

 ...

 </element_node>

 </element_node> <!-- end of element Shipment-->

 </element_node> <!-- end of element Part -->

Nesting the shipment element inside the part element produces an XML file

with Shipment as a child element of the Part element:

 <Part color="black ">

 <key>68</key>

 <Quantity>36</Quantity>

 <ExtendedPrice>34850.16</ExtendedPrice>

 <Tax>6.000000e-2</Tax>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>BOAT </ShipMode>

 </Shipment>

 </Part>

There are no ordering restrictions on predicates of the root node condition.

With the RDB_node mapping approach, you don’t need to supply SQL statements.

However, putting complex query conditions in the RDB_node element can be more

difficult.

Chapter 4. Managing data in XML collections 111

For a subtree of the DAD with element_nodes and attribute_nodes that map to the

same table, the following is true:

v Attribute nodes do not have to be the first children of the lowest common

ancestor of the element nodes that map to the same table.

v Attribute nodes can appear anywhere in the subtree, as long as they are not

involved in a join condition.

Restrictions: The limit for the number of tables allowed in a RDB_node mapping

DAD is 30. The number of columns allowed per table is 500. The number of times

each table or column can be specified in the join predicates of the condition

statement is unlimited

Stylesheets for an XML collection

 When composing documents, XML Extender also supports processing instructions

for stylesheets, using the <stylesheet> element. The processing instructions must be

inside the <Xcollection> root element, located with the <doctype> and <prolog>

defined for the XML document structure. For example:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "c:\dtd\dad.dtd">

<DAD>

<SQL_stmt>

 ...

</SQL_stmt>

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet type="text/css" href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

...

</DAD>

Location paths

 A location path defines the location of an XML element or attribute within the

structure of the XML document. The XML Extender uses the location path for the

following purposes:

v To locate the elements and attributes to be extracted when using extraction

UDFs such as dxxRetrieveXML.

v To specify the mapping between an XML element or attribute and a DB2®

column when defining the indexing scheme in the DAD for XML columns

v For structural text search, using the Text Extender

v To override the XML collection DAD file values in a stored procedure.

Figure 13 on page 113 shows an example of a location path and its relationship to

the structure of the XML document.

112 XML Extender Administration and Programming

Related reference:

v “Location path syntax” on page 113

Location path syntax

 XML Extender uses the location path to navigate the XML document structure. The

following list describes the location path syntax that is supported by the XML

Extender. A single slash (/) path indicates that the context is the whole document.

1. / Represents the XML root element. This the element that contains all the

other elements in the document.

2. /tag1

Represents the element tag1 under the root element.

3. /tag1/tag2/..../tagn

Represents an element with the name tagn as the child of the descending

chain from root, tag1, tag2, through tagn-1.

4. //tagn

Represents any element with the name tagn, where double slashes (//)

denote zero or more arbitrary tags.

5. /tag1//tagn

Represents any element with the name tagn, a descendent of an element

with the name tag1 under root, where double slashes (//) denote zero or

more arbitrary tags.

6. /tag1/tag2/@attr1

Represents the attribute attr1 of an element with the name tag2, which is a

child of element tag1 under root.

7. /tag1/tag2[@attr1=″5″]

Represents an element with the name tag2 whose attribute attr1 has the

value 5. Thetag2 is a child of the tag1element under root.

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 13. Storing documents as structured XML documents in a DB2 UDB table column

Chapter 4. Managing data in XML collections 113

8. /tag1/tag2[@attr1=″5″]/.../tagn

Represents an element with the name tagn, which is a child of the

descending chain from root, tag1, tag2, through tagn-1, where the attribute

attr1 of tag2 has the value 5.

Simple location path

 Simple location path is a type of location path used in the XML column

DAD file. A simple location path is represented as a sequence of

element-type names that are connected by a single slash (/). The values of

each attribute are enclosed within square brackets following the element

type. Table 15 summarizes the syntax for simple location path.

 Table 15. Simple location path syntax

Subject Location path Description

XML element /tag1/tag2/..../tagn-1/tagn An element content identified by

the element named tagn and its

parents

XML attribute /tag_1/tag_2/..../tag_n-1/tag_n/@attr1 An attribute namedattr1 of the

element identified by tagn and its

parents

Location path usage

 The syntax of the location path is dependent on the context in which you

are accessing the location of an element or attribute. Because the XML

Extender uses one-to-one mapping between an element or attribute, and a

DB2 column, it restricts the syntax rules for the DAD file and functions.

Table 16 describes in which contexts the syntax options are used.

 Table 16. The XML Extender’s restrictions using location path

Use of the location path Location path supported

Value of path attribute in the XML column

DAD mapping for side tables

3, 6 (simple location path described in

Table 15)

Extracting UDFs 1-81

Update UDF 1-81

Text Extender’s search UDF 3 – Exception: the root mark is specified

without the slash. For example:

tag1/tag2/..../tagn

1 The extracting and updating UDFs support location paths that have predicates with

attributes, but not elements.

 Related concepts:

v “Location paths” on page 112

Enabling XML collections

 Enabling an XML collection parses the DAD file to identify the tables and columns

related to the XML document, and records control information in the XML_USAGE

table. Enabling an XML collection is optional for:

v Decomposing an XML document and storing the data in new DB2 UDB tables

v Composing an XML document from existing data in multiple DB2 UDB tables

114 XML Extender Administration and Programming

If the same DAD file is used for composing and decomposing, you can enable the

collection for both composition and decomposition.

You can enable an XML collection with the XML Extender Administration wizard,

with the dxxadm command with the enable_collection option, or with the XML

Extender stored procedure dxxEnableCollection().

 Using the Administration wizard:

 To enable an XML collection using the wizard:

1. Set up and start the Administration wizard.

2. Click Work with XML Collections from the Launchpad window. The Select a

Task window opens.

3. Click Enable a Collection and then Next. The Enable a Collection window

opens.

4. Select the name of the collection that you want to enable in the Collection

name field.

5. Specify the DAD file name in the DAD file name field.

6. Optional: Type the name of a previously created table space in the Table space

field.

The table space will contain new DB2 UDB tables generated for decomposition.

7. Click Finish to enable the collection and return to the Launchpad window.

v If the collection is successfully enabled, an Enabled collection is

successful message is displayed.

v If the collection is not successfully enabled, an error message is displayed.

Repeat the steps above until the collection is successfully enabled.

 Enabling collections using the dxxadm command:

 To enable an XML collection, enter the dxxadm command from a DB2 UDB

command line:

Syntax:

�� enable_collection -a subsystem_name collection DAD_file �

�
-t

tablespace
 ��

Parameters:

-a subsystem_name

The name of the DB2 UDB subsystem.

collection

The name of the XML collection. This value is used as a parameter for the

XML collection stored procedures.

DAD_file

The name of the file that contains the document access definition (DAD).

tablespace

An existing table space that contains new DB2 UDB tables that were

generated for decomposition. If not specified, the default table space is

used.

Chapter 4. Managing data in XML collections 115

Example: The following example enables a collection called sales_ord using the

command line. The DAD file uses SQL mapping.

dxxadm enable_collection -a SUBSYS1 ORDRPSC SALES_ORD

 ’dxx/samples/dad/getstart_xcollection.dad’

After you enable the XML collection, you can compose or decompose XML

documents using the XML Extender stored procedures.

 Related concepts:

v “XML collections as a storage and access method” on page 91

 Related tasks:

v “Disabling XML collections” on page 116

v “Managing data in XML collections” on page 92

Disabling XML collections

 Disabling an XML collection removes the record in the XML_USAGE table that

identifies tables and columns as part of a collection. It does not drop any data

tables. You disable a collection when you want to update the DAD and need to

re-enable a collection, or when you want to drop a collection.

You can disable an XML collection with the XML Extender Administration wizard,

with the dxxadm command with the disable_collection option, or with the XML

Extender stored procedure dxxDisableCollection().

 Procedure:

 To disable an XML collection using the Administration wizard:

1. Start the Administration wizard.

2. Click Work with XML Collections from the Launchpad window to view the

XML Extender collection related tasks. The Select a Task window opens.

3. Click Disable an XML Collection and then Next to disable an XML collection.

The Disable a Collection window opens.

4. Type the name of the collection that you want to disable in the Collection

name field.

5. Click Finish to disable the collection and return to the Launchpad window.

v If the collection is successfully disabled, Disabled collection is successful

message is displayed.

v If the collection is not successfully disabled, an error box is displayed. Repeat

the steps above until the collection is successfully disabled.

To disable an XML collection from the command line, enter the dxxadm command.

Syntax:

�� dxxadm disable_collection -a subsystem_name collection ��

Parameters:

- a subsystem_name

The name of the DB2 subsystem.

116 XML Extender Administration and Programming

collection

The name of the XML collection. This value is used as a parameter for the

XML collection stored procedures.

Example:

dxxadm disable_collection -a SUBSYS1 SALES_ORD

 Related concepts:

v “XML collections as a storage and access method” on page 91

v “XML Extender administration stored procedures” on page 195

 Related tasks:

v “Managing data in XML collections” on page 92

Chapter 4. Managing data in XML collections 117

118 XML Extender Administration and Programming

Chapter 5. XML schemas

The XML schema can be used in place of a DTD to define the specifications for the

content of XML documents. The XML schema uses XML format or SML syntax to

define the elements and attribute names of an XML document, and defines the

type of content that the elements and attributes are allowed to contain.

Advantages of using XML schemas instead of DTDs

 DTDs are easier to code and validate than an XML schema. However, the

advantages to using an XML schema are shown in the following list:

v XML schemas are valid XML documents that can be processed by tools such as

the XSD Editor in WebSphere® Studio Application Developer, XML Spy, or XML

Authority.

v XML schemas are more powerful than DTDs. Everything that can be defined by

the DTD can also be defined by schemas, but not vice versa.

v XML schemas support a set of data types, similar to the ones used in most

common programming languages, and provide the ability to create additional

types. You can constrain the document content to the appropriate type. For

example, you can replicate the properties of fields found in DB2.

v XML schemas support regular expressions to set constraints on character data,

which is not possible if you use a DTD.

v XML schemas provide better support for XML namespaces, which enable you to

validate documents that use multiple namespaces, and to reuse constructs from

schemas already defined in different namespaces.

v XML schemas provide better support for modularity and reuse with include and

import elements.

v XML schemas support inheritance for element, attribute, and data type

definitions.

 Related tasks:

v “Data types, elements and attributes in schemas” on page 121

 Related reference:

v “Examples of an XML schema” on page 122

UDTs and UDF names for XML Extender

 The full name of a DB2® function is schema-name.function-name, where schema-name

is an identifier that provides a logical grouping for a set of SQL objects. The

schema name for XML Extender UDFs and UDTs is DB2XML. In the

documentation, references are made only to the function name.

You can specify UDTs and UDFs without the schema name if you add the schema

name to the function path. The function path is an ordered list of schema names.

DB2 UDB uses the order of schema names in the list to resolve references to

functions and UDTs. You can specify the function path by specifying the SQL

statement SET CURRENT FUNCTION PATH. This statement sets the function path

in the CURRENT FUNCTION PATH special register.

© Copyright IBM Corp. 1999, 2004 119

Recommendation: Add the DB2XML schema name to the function path. By adding

this schema name, you can enter XML Extender UDF and UDT names without

having to qualify them with DB2XML. The following example shows how to add

the DB2XML schema to the function path:

SET CURRENT FUNCTION PATH = DB2XML, CURRENT FUNCTION PATH

Restriction: Do not add DB2XML as the first schema in the function path if you

log on with a user ID of DB2XML. DB2XML is automatically set as the first schema

when you log on as DB2XML. If you add DB2XML as the first schema in the

function path, you will receive an error condition because the function path will

start with two DB2XML schemas.

XML schema complexType element

 The XML schema element complexType is used to define an element type that can

consist of sub-elements. For example, the following tags show the projection of an

address in an XML document:

<billTo country="US">

 <name>Dan Jones</name>

 <street>My Street</street>

 <city>My Town</city>

 <state>CA</state>

 <zip>99999</zip>

</billTo>

The structure of this element can be defined in the XML schema as follows:

1 <xsd:element name="billTo" type="USAddress"/>

2 < xsd:complexType name="USAddress">

 3 <xsd:sequence>

 4 < xsd:element name="name" type="xsd:string"/>

 5 < xsd:element name="street" type="xsd:string"/>

 6 < xsd:element name="city" type="xsd:string"/>

 7 < xsd:element name="state" type="xsd:string"/>

 8 < xsd:element name="zip" type="xsd:decimal"/>

 9 </xsd:sequence>

 10 < xsd:attribute name="country"

 type="xsd:NMTOKEN" use="fixed"

 value="US"/>

 12</xsd:complexType>

In the above example, it is assumed that the xsd prefix has been bound to the XML

schema namespace. Lines 2 through 5 define the complexType USAddress as a

sequence of five elements and one attribute. The order of the elements is

determined by the order in which they appear in the sequence tag.

The inner elements are from data type xsd:string or xsd:decimal. Both are

predefined simple data types.

Alternatively, you can use the all tag or the choice tag instead of the sequence tag.

With the all tag, all sub-elements must appear, but do not need to appear in any

particular order. With the choice tag, exactly one of the sub-elements must appear

in the XML document

You can also use a user-defined data type to define other elements.

120 XML Extender Administration and Programming

Data types, elements and attributes in schemas

Simple data types in XML schemas

XML schemas provide a set of simple built-in data types. You can derive other data

types from them by applying constraints.

In Example 1, the range of base type xsd:positiveInteger is limited to 0 to 100.

Example 1

< xsd:element name="quantity">

 < xsd:simpleType>

 < xsd:restriction base="xsd:positiveInteger">

 < xsd:maxExclusive value="100"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

In Example 2, the base type xsd:string is limited by a regular expression.

Example 2

<xsd:simpleType name="SKU">

 < xsd:restriction base="xsd:string">

 < xsd:pattern value="\d{3}-[A-Z]{2}"/>

 </xsd:restriction>

 </xsd:simpleType>

Example 3 shows an enumerated type based on the string built-in type.

Example 3

<xsd:simpleType name="SchoolClass">

 < xsd:restriction base="xsd:string">

 < xsd:enumeration value="WI"/>

 < xsd:enumeration value="MI"/>

 < xsd:enumeration value="II"/>

 < xsd:enumeration value="DI"/>

 < xsd:enumeration value="AI"/>

 </xsd:restriction>

 </xsd:simpleType>

Elements in XML schemas

To declare an element in an XML schema you must indicate the name and type as

an attribute of the element element. For example:

<xsd:element name="street" type="xsd:string"/>

Additionally, you can use the attributes minOccurs and maxOccurs to determine

the maximum or minimum number of times that the element must appear in the

XML document. The default value of minOccurs and maxOccurs is 1.

Attributes in XML schemas

Attribute declarations appear at the end of an element definition. For example:

<xsd:complexType name="PurchaseOrderType">

< xsd:sequence>

 < xsd:element name="billTo" type="USAddress"/>

< xsd:sequence>

 < xsd:attribute name="orderDate" type="xsd:date"/>

 </xsd:complexType>

 Related concepts:

v “Advantages of using XML schemas instead of DTDs” on page 119

Chapter 5. XML schemas 121

|
|
|
|
|
|

Related tasks:

v “Validation functions” on page 163

 Related reference:

v “Examples of an XML schema” on page 122

v “XML schema complexType element” on page 120

Examples of an XML schema

 It is a good strategy to write XML schemas by first designing the data structure of

your XML document using a UML tool. After you design the structure, you can

map the structure into your schema document. The following example shows an

XML schema.

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

 3

 4 <xs:element name="personnel">

 5 <xs:complexType>

 6 <xs:sequence>

 7 <xs:element ref="person" minOccurs=’1’ maxOccurs=’unbounded’/>

 8 </xs:sequence>

 9 </xs:complexType>

 10 </xs:element>

 11

 12 <xs:element name="person">

 13 <xs:complexType>

 14 <xs:sequence>

 15 <xs:element ref="name"/>

 16 <xs:element ref="email" minOccurs=’0’ maxOccurs=’4’/>

 17 </xs:sequence>

 18 <xs:attribute name="id" type="xs:ID" use=’required’/>

 19 </xs:complexType>

 20 </xs:element>

 21

 22 <xs:element name="name">

 23 <xs:complexType>

 24 <xs:sequence>

 25 <xs:element ref="family"/>

 26 <xs:element ref="given"/>

 27 </xs:sequence>

 28 </xs:complexType>

 29 </xs:element>

 30

 31 <xs:element name="family" type=’xs:string’/>

 32 <xs:element name="given" type=’xs:string’/>

 33 <xs:element name="email" type=’xs:string’/>

 34 </xs:schema>

The first two lines declare that this XML schema is XML 1.0 compatible and

Unicode 8 decoded, and specify use of the XML schema standard namespace,

which enables access to basic XML schema data types and structures.

Lines 4 to 10 define the personnel as a complexType that consists of a sequence of

1 to n persons. The complexType is then defined in lines 12 to 20. It consists of the

complexType element name and the element email. The email element is optional

(minOcccurs = ’0’), and can appear up to four times (maxOccurs = ’4’). The greater

the number of occurrences of an element, the longer it will take to validate the

schema. In contrast, in a DTD you can choose only 0, 1, or unlimited appearances

of an element.

122 XML Extender Administration and Programming

Lines 22 to 29 define the name type that is used for the person type. The name

type consists of a sequence of a family and a given element.

Lines 31 to 33 define the single elements family, given, and e-mail, which contain

type strings that have been declared.

XML document instance using the schema

The following example is an XML document that is an instance of the personalnr.xsd

schema.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation=’personsnr.xsd’>

4

5 <person id="Big.Boss" >

6 <name><family>Boss</family><given>Big</given></name>

7 <email>chief@foo.com</email>

8 </person>

9

10 <person id="one.worker">

11 <name><family>Worker</family><given>One</given></name>

12 <email>one@foo.com</email>

13 </person>

14

15 <person id="two.worker">

16 <name><family>Worker</family><given>Two</given></name>

17 <email>two@foo.com</email>

18 </person>

19 </personnel>

XML document instance using a DTD

This example shows how this XML schema would be realized as a DTD.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!ELEMENT email (#PCDATA)>

3 <!ELEMENT family (#PCDATA)>

4 <!ELEMENT given (#PCDATA)>

5 <!ELEMENT name (family, given)>

6 <!ELEMENT person (name, email*)>

7

8 <!ATTLIST person

9 id ID #REQUIRED>

10 <!ELEMENT personnel (person+)>

Using a DTD you can set the maximum occurrence of email to only 1 or unlimited

occurrences.

Using this DTD, the XML document instance would be the same as shown in the

top example, except line 2 would be changed to:

<!DOCTYPE personnel SYSTEM "personsnr.dtd">

 Related concepts:

v “Advantages of using XML schemas instead of DTDs” on page 119

 Related tasks:

v “Data types, elements and attributes in schemas” on page 121

v “Validation functions” on page 163

 Related reference:

v “XML schema complexType element” on page 120

Chapter 5. XML schemas 123

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

124 XML Extender Administration and Programming

Part 4. Reference

This part provides syntax information for the XML Extender administration

command, user-defined data types (UDTs), user-defined functions (UDFs), and

stored procedures. Message text is also provided for problem determination

activities.

© Copyright IBM Corp. 1999, 2004 125

126 XML Extender Administration and Programming

Chapter 6. The dxxadm administration command

dxxadm command overview

 You perform the following XML Extender administration tasks by calling dxxadm

using various subcommands:

 Related concepts:

v “Administration tools for XML Extender” on page 37

v “XML Extender administration planning” on page 38

Syntax of the dxxadm administration command

�� dxxadm ’ -a subsystem name enable_server parameters

disable_server

enable_column

parameters

disable_column

parameters

enable_collection

parameters

disable_collection

parameters

 ’ ��

 Parameters:

 Table 17. dxxadm parameters

Parameter Description

subsystem name The name of the DB2 UDB subsystem to which

the application attaches.

enable_server Enables XML Extender features for a server.

disable_server Disables XML Extender features for a server.

enable_column Enables an XML column so that it can contain the

XML Extender UDTs.

disable_column Disables the XML-enabled column.

enable_collection Enables an XML collection according to the

specified DAD.

enable_collection Disables an XML-enabled collection.

Subcommands of the administration command

The following dxxadm subcommands are available to system programmers:

v enable_column

v enable_collection

v enable_server

v disable_column

v disable_collection

v disable_server

© Copyright IBM Corp. 1999, 2004 127

enable_server option of the dxxadm command

 Purpose:

 Enables XML Extender features for a server. When the server is enabled, the XML

Extender creates the following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender stored procedures

v The XML Extender DTD repository table, DTD_REF, which stores DTDs and

information about each DTD.

v The XML Extender usage table, XML_USAGE, which stores common information

for each column that is enabled for XML and for each collection.

 Syntax:

�� dxxadm enable_server -a subsystem_name

security

security_level
 �

� WLM environment WLM_name1

, WLM_name2
 ��

 Parameters:

 Table 18. enable_server parameters

Parameter Description

subsystem_name The name of the DB2 subsystem.

security_level Determines the user ID that is authorized to

access external resources when running

stored procedures. Choices are DB2, USER,

DEFINER. DB2 UDB is the default.

WLM name The names of the WLM environments. At

least one name is required. If one is

specified, the name is for all stored

procedures and UDFs. If two are specified,

the first name is for the stored procedures,

the second name is for the UDFs.

 The following table describes the tablespaces that will be created while enabling

the server:

 Table 19. enable_server tablespaces

Tablespace Description

DXXDTDRF The tablespace name in which the DTD_REF

table is stored.

DXXXMLUS The tablespace name in which the

XML_USAGE table is stored.

DXXDTDL1 The tablespace name in which the CLOB

column CONTENT of the DTD_REF table is

stored.

DXXDTDL2 The tablespace name in which the CLOB

column DAD of the XML_USAGE table is

stored.

128 XML Extender Administration and Programming

You can create any or all of the above tablespaces before enabling the server. If you

do not create the tablespaces before enabling the server, the following commands

will be executed to create the tablespaces when the enable_server command is run:

CREATE TABLESPACE DXXDTDRF USING STOGROUP SYSDEFLT

PRIQTY 288 SECQTY 48 IN DB2XML

CREATE TABLESPACE DXXXMLUS USING STOGROUP SYSDEFLT

PRIQTY 288 SECQTY 48 IN DB2XML

CREATE LOB TABLESPACE DXXDTDL1 LOG NO USING STOGROUP SYSDEFLT

PRIQTY 1920 SECQTY 480 IN DB2XML

CREATE LOB TABLESPACE DXXDTDL2 LOG NO USING STOGROUP SYSDEFLT

PRIQTY 1920 SECQTY 480 IN DB2XML

 Examples:

 The following example enables the database server for XML Extender using the

SUBSY1 subsystem and the WML environment ENVIR233:

dxxadm ’enable_server -a SUBSYS1 wlm environment envir233’

 Related reference:

v “dxxadm command overview” on page 127

disable_server option of the dxxadm command

 Purpose:

 Disables XML Extender features for a database server, called “disabling a

database”. When the database server is disabled, it can no longer be used by the

XML Extender. When the XML Extender disables the database server, it drops the

following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender DTD repository table, DTD_REF, which stores DTDs and

information about each DTD.

v The XML Extender usage table, XML_USAGE, which stores common information

for each column that is enabled for XML and for each collection.

Important: You must disable all XML columns before attempting to disable a

database server. The XML Extender cannot disable a database server that contains

columns or collections that are enabled for XML.

 Syntax:

�� disable_server -a subsystem_name ��

 Parameters:

 Table 20. disable_server parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

 Examples:

 The following example disables the database server:

dxxadm disable_server -a SUBSYS1

Chapter 6. The dxxadm administration command 129

Related concepts:

v “XML Extender administration stored procedures” on page 195

 Related reference:

v “How to read syntax diagrams” on page viii

enable_column option of the dxxadm command

 Purpose:

 Connects to a database server and enables an XML column so that it can contain

the XML Extender UDTs. When enabling a column, the XML Extender completes

the following tasks:

v Determines whether the XML table has a primary key; if not, the XML Extender

alters the XML table and adds a column called DXXROOT_ID.

v Creates side tables that are specified in the DAD file with a column containing a

unique identifier for each row in the XML table. This column is either the root

ID that the user specified or the DXXROOT_ID that was named by the XML

Extender.

v Creates a default view for the XML table and its side tables, optionally using a

name you specify.

 Syntax:

�� dxxadm enable_column -a subsystem_name tab_name column_name DAD_file �

�
-t

tablespace

-v

default_view

-r

root_id

-l

login
 �

�
-p

password
 ��

 Parameters:

 Table 21. enable_column parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

tab_name The name of the table in which the XML

column resides.

column_name The name of the XML column.

DAD_file The name of the DAD file that maps the

XML document to the XML column and side

tables.

-t tablespace The table space that contains the side tables

associated with the XML column. If not

specified, the default table space is used.

-v default_view The name of the default view that joins the

XML column and side tables.

-r root_id The name of the primary key in the XML

column table that is to be used as the root_id

for side tables. The root_id is optional.

-l login The user ID, used to connect to the database.

If not specified, the current user ID is used.

130 XML Extender Administration and Programming

Table 21. enable_column parameters (continued)

Parameter Description

-p password The password used to connect to the

database. If not specified, the current

password is used.

 Examples:

 The following example enables an XML column.

dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER getstart.dad -v SALODVW -r INVOICE_NUMBER

disable_column option of the dxxadm command

 Purpose:

 Connects to a database and disables the XML-enabled column. When the column is

disabled, it can no longer contain XML data types. When an XML-enabled column

is disabled, the following actions are performed:

v The XML column usage entry is deleted from the XML_USAGE table.

v The USAGE_COUNT is decremented in the DTD_REF table.

v All triggers that are associated with this column are dropped.

v All side tables that are associated with this column are dropped.

Important: You must disable an XML column before dropping an XML table. If an

XML table is dropped but its XML column is not disabled, the XML Extender

keeps both the side tables it created and the XML column entry in the

XML_USAGE table.

 Syntax:

�� dxxadm disable_column -a subsystem_name tab_name column_name �

�
-l

login

-p

password
 ��

 Parameters:

 Table 22. disable_column parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

tab_name The name of the table in which the XML

column resides.

column_name The name of the XML column.

-l login The user ID used to connect to the database.

If not specified, the current user ID is used.

-p password The password used to connect to the

database. If not specified, the current

password is used.

 Examples:

 The following example disables an XML-enabled column.

dxxadm disable_column -a SUBSYS1 SALES_TAB ORDER

 Related concepts:

Chapter 6. The dxxadm administration command 131

v “XML columns as a storage and access method” on page 73

v “XML Extender administration stored procedures” on page 195

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

enable_collection option of the dxxadm command

 Purpose:

 Connects to a database server and enables an XML collection according to the

specified DAD. When enabling a collection, the XML Extender does the following

tasks:

v Creates an XML collection usage entry in the XML_USAGE table.

v For RDB_node mapping, creates collection tables specified in the DAD if the

tables do not exist in the database.

 Syntax:

�� enable_collection -a subsystem_name collection_name DAD_file �

�
-t

tablespace
 ��

 Parameters:

 Table 23. enable_collection parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

-t tablespace The name of the table space associated with

the collection. If not specified, the default

table space is used.

collection_name The name of the XML collection.

DAD_file The name of the DAD file that maps the

XML document to the relational tables in the

collection.

 Example::

 The following example enables an XML collection named SALES_ORD with the

GETSTART_XCOLLECTION.DAD:

dxxadm enable_collection -a SUBSYS1 using ORDRPSC SALES_ORD

 ’ORDPRJ.WORK.DAD(GETSTART_XCOLLECTION)’

 Related reference:

v “dxxadm command overview” on page 127

disable_collection option

 Purpose:

132 XML Extender Administration and Programming

Disables an XML-enabled collection. The collection name can no longer be used in

the composition (dxxRetrieveXML) and decomposition (dxxInsertXML) stored

procedures. When an XML collection is disabled, the associated collection entry is

deleted from the XML_USAGE table. Note that disabling the collection does not

drop the collection tables that are created when you use the enable_collection

option.

 Syntax:

�� dxxadm disable_collection -a subsystem_name collection_name ��

 Parameters:

 Table 24. disable_collection parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

collection_name The name of the XML collection.

 Examples:

 The following example disables an XML collection named SALES_ORD.

dxxadm disable_collection -a SUBSYS1 SALES_ORD

Chapter 6. The dxxadm administration command 133

134 XML Extender Administration and Programming

Chapter 7. XML Extender user-defined types

 User-defined types (UDTs) are data types created by a DB2® application or tool.

The XML Extender creates the following user-defined types for use with XML

columns:

v XMLVARCHAR

v XMLCLOB

v XMLFILE

The data types are used to define the column in the application table that will be

used to store the XML document. You can also store XML documents as files on

the file system, by specifying a file name.

All XML Extender’s user-defined types have the qualifier DB2XML, which is the

schema name of the DB2 UDB XML Extender user-defined types. For example:

db2xml.XMLVarchar

The XML Extender creates UDTs for storing and retrieving XML documents.

Table 25 describes the UDTs.

 Table 25. The XML Extender UDTs

User-defined type column Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML

document as VARCHAR

inside DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML

document as a character large

object (CLOB) inside DB2.

XMLFILE VARCHAR(512) Specifies the file name of the

local file server. If XMLFILE

is specified for the XML

column, then the XML

Extender stores the XML

document in an external

server file. The Text Extender

cannot be enabled with

XMLFILE. You must ensure

integrity between the file

content, DB2, and the side

table created for indexing.

Where varchar_len and clob_len are specific to the operating system.

For XML Extender on DB2 UDB, varchar_len = 3K and clob_len = 2G.

To change the size of an XMLVARCHAR or XMLCLOB UDT, create the UDT

before you enable the database for XML Extender.

Procedure:

To change the size of an XMLVARCHAR or XMLCLOB UDT of an enabled

database:

© Copyright IBM Corp. 1999, 2004 135

|
|

|
|

1. Back up all data in the XML Extender-enabled database.

2. Drop all XML collection tables or XML column side tables.

3. Disable the database with the dxxadm disable_servercommand.

4. Create the XMLVARCHAR or XMLCLOB user-defined type.

5. Enable the database with the dxxadm enable_servercommand.

6. Re-create and reload the tables.

These UDTs are used only to specify the types of application columns; they do not

apply to the side tables that the XML Extender creates.

 Related concepts:

v “XML columns as a storage and access method” on page 73

v “XML collections as a storage and access method” on page 91

v “Preparing to administer XML Extender” on page 37

v “Mapping schemes for XML collections” on page 104

136 XML Extender Administration and Programming

|

|

|

|

|

|

Chapter 8. XML Extender user-defined functions

A user–defined function (UDF) is a function that is defined to the database

management system and can be referenced in SQL statements. This chapter

describes user-defined functions that are used by DB2 UDB XML Extender.

Types of XML Extender user-defined functions

 The XML Extender provides functions for storing, retrieving, searching, and

updating XML documents, and for extracting XML elements or attributes. You use

XML user-defined functions (UDFs) for XML columns, but not for XML collections.

All the UDFs have the schema name DB2XML.

The types of XML Extender functions are described in the following list:

storage functions

Storage functions insert intact XML documents in XML-enabled columns as

XML data types.

retrieval functions

Retrieval functions retrieve XML documents from XML columns in a DB2®

database.

extracting functions

Extracting functions extract and convert the element content or attribute

value from an XML document to the data type that is specified by the

function name. The XML Extender provides a set of extracting functions

for various SQL data types.

update function

The Update function modifies an entire XML document or specified

element content or attribute values and returns a copy of an XML

document with an updated value, which is specified by the location path.

generate_unique function

The generate_unique function returns a unique key.

Validation functions

Validation functions validate XML documents against either an XML

schema or a DTD.

The XML user-defined functions allow you to perform searches on general SQL

data types. Additionally, you can use the DB2 UDB Text Extender for OS/390®

with XML Extender to perform structural and full text searches on text in XML

documents. This search capability can be used, for example, to improve the

usability of a Web site that publishes large amounts of readable text, such as

newspaper articles or Electronic Data Interchange (EDI) applications, which have

frequently searchable elements or attributes.

Restriction: When using parameter markers in UDFs, a Java™ database (JDBC)

restriction requires that the parameter marker for the UDF must be cast to the data

type of the column into which the returned data will be inserted.

© Copyright IBM Corp. 1999, 2004 137

Storage functions

Storage functions in XML Extender overview

 Use storage functions to insert XML documents into a DB2 UDB database. You can

use the default casting functions of a UDT directly in INSERT or SELECT

statements. Additionally, XML Extender provides UDFs to take XML documents

from sources other than the UDT base data type and convert them to the specified

UDT.

XMLCLOBFromFile() function

 Purpose:

 Reads an XML document from a server file and returns the document as an

XMLCLOB type.

 Syntax:

�� XMLCLOBFromFile (fileName ,

src_encoding

)
 ��

 Parameters:

 Table 26. XMLCLOBFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file

name.

src_encoding VARCHAR(100) The encoding of the source

file.

 Results:

 XMLCLOB as LOCATOR

 Example:

 The following example reads an XML document from a file on a server and inserts

it into an XML column as an XMLCLOB type. The encoding of the server file is

explicitly specified as iso-8859-1.

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

 VALUES(’1234’, ’Sriram Srinivasan’,

 XMLCLOBFromFile(’dxx_install/samples/db2xml

 /xml/getstart.xml

 ’, ’iso-8859-1’))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLCLOB type.

XMLFileFromCLOB() function

 Purpose:

 Reads an XML document as CLOB locator, writes it to an external server file, and

returns the file name and path as an XMLFILE type.

138 XML Extender Administration and Programming

|

|
|

|

|||||||||||||||||||||

|
|

||

|||

|||
|

|||
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

Syntax:

�� XMLFileFromCLOB (buffer , fileName ,

targetencoding

)
 ��

 Parameters:

 Table 27. XMLFileFromCLOB() parameters

Parameters Data type Description

buffer CLOB as LOCATOR The buffer containing the

XML document.

fileName VARCHAR(512) The fully qualified server file

name.

targetencoding VARCHAR(100) The encoding of the output

file.

 Results:

 XMLFILE

 Example:

 The following example reads an XML document as CLOB locator (a host variable

with a value that represents a single LOB value in the database server), writes it to

an external server file, and inserts the file name and path as an XMLFILE type in

an XML column. The function will encode the output file in ibm-808.

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB_LOCATOR xml_buff;

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

 VALUES(’1234’, ’Sriram Srinivasan’,

 XMLFileFromCLOB(:xml_buf, ’dxx_install/samples/db2xml

 /xml/getstart.xml’, ’ibm-808’))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLFILE type. If

you have an XML document in your buffer, you can store it in a server file.

XMLFileFromVarchar() function

 Purpose:

 Reads an XML document from memory as VARCHAR, writes it to an external

server file, and returns the file name and path as an XMLFILE type.

 Syntax:

�� XMLFileFromVarchar (buffer , fileName ,)

targetencoding
 ��

 Parameters:

Chapter 8. XML Extender user-defined functions 139

|

|||||||||||||||||||||||||

|
|

||

|||

|||
|

|||
|

|||
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

||||||||||||||||||||||||

|
|

Table 28. XMLFileFromVarchar parameters

Parameter Data type Description

buffer VARCHAR(3K) The buffer containing the

XML document.

fileName VARCHAR(512) The fully qualified server file

name.

targetencoding VARCHAR(100) The encoding of the output

file.

 Results:

 XMLFILE

 Example:

 The following examples reads an XML document from memory as VARCHAR,

writes it to an external server file, and inserts the file name and path as an

XMLFILE type in an XML column. The function will encode the output file in

iso-8859-1.

EXEC SQL BEGIN DECLARE SECTION;

 struct { short len; char data[3000]; } xml_buff;

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

 VALUES(’1234’, ’Sriram Srinivasan’,

 XMLFileFromVarchar(:xml_buf, ’dxx_install/samples/db2xml

 /xml/getstart.xml’, ’iso-8859-1’))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLFILE type.

XMLVarcharFromFile() function

 Purpose:

 Reads an XML document from a server file and returns the document as an

XMLVARCHAR type.

 Syntax:

�� XMLVarcharFromFile (fileName ,

src_encoding

)
 ��

 Parameters:

 Table 29. XMLVarcharFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file

name.

src_encoding VARCHAR(100) The encoding of the source

file.

 Results:

140 XML Extender Administration and Programming

||

|||

|||
|

|||
|

|||
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|||||||||||||||||||||

|
|

||

|||

|||
|

|||
|
|
|

XMLVARCHAR

 Example:

 The following example reads an XML document from a server file and inserts it

into an XML column as an XMLVARCHAR type. The encoding of the server file is

explicitly specified as ibm-808.

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

 VALUES(’1234’, ’Sriram Srinivasan’,

 XMLVarcharFromFile(’dxx_install/samples/db2xml

 /xml/getstart.xml’, ’ibm-808’))

where dxx_install is the directory where XML Extender is installed.

In this example, a record is inserted into the SALES_TAB table. The function

XMLVarcharFromFile() imports the XML document from a file that is explicitly

specified to be encoded in ibm-808 into DB2 UDB and stores it as a

XMLVARCHAR.

Retrieval functions

Retrieval functions in XML Extender

 The XML Extender provides an overloaded function Content(), which is used for

retrieval. This overloaded function refers to a set of retrieval functions that have

the same name, but behave differently based on where the data is being retrieved.

You can also use the default casting functions to convert an XML UDT to the base

data type.

The Content() functions provide the following types of retrieval:

v Retrieval from external storage at the server to a host variable at the client.

You can use Content() to retrieve an XML document to a memory buffer when it

is stored as an external server file. You can use Content(): retrieve from

XMLFILE to a CLOB for this purpose.

v Retrieval from internal storage to an external server file

You can also use Content() to retrieve an XML document that is stored inside

DB2 UDB and store it to a server file on the DB2 UDB server’s file system. The

following Content() functions are used to store information on external server

files:

– Content(): retrieve from XMLVARCHAR to an external server file

– Content(): retrieval from XMLCLOB to an external server file

The following user-defined functions have a new parameter that specifies the

encoding of the source or output file. The value of this parameter is any code page

name that is recognized by ICU.

db2xml.XMLVarcharFromFile(filename varchar(512), src_encoding varchar(100))

returns XMLVarchar

db2xml.XMLCLOBFromFile(filename varchar(512), src_encoding varchar(100))

returns XMLCLOB AS LOCATOR

db2xml.XMLFileFromVarchar(doc varchar(3000), targetfilename varchar(512),

targetencoding varchar(100))

returns XMLFile

Chapter 8. XML Extender user-defined functions 141

|

|

|
|
|

|
|
|
|

|

|
|
|
|

db2xml.XMLFileFromCLOB(doc CLOB(2G) as LOCATOR, targetfilename varchar(512),

 targetencoding varchar(100))

returns XMLFile

db2xml.Content(doc XMLVarchar, targetfilename varchar(512),

 targetencoding varchar(100))

returns varchar(512)

db2xml.Content(doc XMLCLOB as LOCATOR, targetfilename varchar(512),

 targetencoding varchar(100))

returns varchar(512)

Examples:

To import the contents of a file /home/collins/xml/entail.xml into a varchar

buffer and to specify that the source file is encoded in iso-8859-1:

db2xml.XMLVarcharFromFile(’/home/collins/xml/entail.xml’, ’iso-8859-1’)

The file is imported into a varchar and converted from iso-8859-1 to the database

code page.

To export a varchar buffer into a file /home/raskolnikov/xml/confession.xml and

to specify that the output file should be encoded in ibm-808:

db2xml.Content(’<sequence><thought>I did it!</thought></sequence>’,

’/home/raskolnikov/xml/confession.xml’, ’ibm-808’)

The contents of the buffer are exported to a file and converted from the database

code page to ibm-808. The encoding declaration of the XML file is then updated

appropriately.

The examples in the following section assume you are using the DB2 UDB

command shell, in which you do not need to type “DB2” at the beginning of each

command.

Content(): retrieve from XMLFILE to a CLOB

 Purpose:

 Retrieves data from a server file and stores it in a CLOB LOCATOR.

 Syntax:

�� Content (xmlobj) ��

 Parameters:

 Table 30. XMLFILE to a CLOB parameter

Parameter Data type Description

xmlobj XMLFILE The XML document.

 Results:

 CLOB (clob_len) as LOCATOR

clob_len for DB2 UDB is 2G.

 Example:

142 XML Extender Administration and Programming

The following example retrieves data from a server file and stores it in a CLOB

locator.

char subsystem[20];

long retcode = 0, reason = 0;

extern "OS" { int DSNALI(char * functn, ...); }

extern "OS" short DSNTIAR(struct sqlca *sqlca,

 error_struct *error_message,

 long *data_len);

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB_LOCATOR xml_buff;

EXEC SQL END DECLARE SECTION;

/* Attach to subsystem */

rc = DSNALI("OPEN ", subsystem, "PLANNAME",

 &retcode, &reason);

if (retcode != 0)

{

 /* print error message */

 goto exit;

}

EXEC SQL DECLARE cl CURSOR FOR

 SELECT Content(order) from sales_tab

 WHERE sales_person = ’Sriram Srinivasan’

EXEC SQL OPEN c1;

do {

 EXEC SQL FETCH c1 INTO :xml_buff;

 if (SQLCODE != 0) {

 break;

 }

 else {

 /* do with the XML doc in buffer */

 }

 }

EXEC SQL CLOSE c1;

/* Detach from sybsystem */

DSNALI("CLOSE ", "SYNC", &retcode, &reason);

if (retcode != 0) {

 /* print error message */

}

The column ORDER in the SALES_TAB table is of an XMLFILE type, so the

Content() UDF retrieves data from a server file and stores it in a CLOB locator.

 Related tasks:

v “Updating, deleting, and retrieving data in XML collections” on page 101

Content(): retrieve from XMLVARCHAR to an external server

file

 Purpose:

 Retrieves the XML content that is stored as an XMLVARCHAR type and stores it in

an external server file.

Chapter 8. XML Extender user-defined functions 143

|

|
|

Syntax:

�� Content (xmlobj , filename ,

targetencoding

)
 ��

Important: If a file with the specified name already exists, the content function

overrides its content.

 Parameters:

 Table 31. XMLVarchar to external server file parameters

Parameter Data type Description

xmlobj XMLVARCHAR The XML document.

filename VARCHAR(512) The fully qualified server file

name.

targetencoding VARCHAR(100) The encoding of the output

file.

 Results:

 VARCHAR(512)

 Example:

 The following example retrieves the XML content that is stored as XMLVARCHAR

type and stores it in an external file located on the server. The UDF encodes the

file in ’ibm-808’.

CREATE table app1 (id int NOT NULL, order DB2XML.XMLVarchar);

INSERT into app1 values (1, ’<?xml version="1.0"?>

 <!DOCTYPE SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd"->

 <Order key="1">

 <Customer>

 <Name>American Motors</Name>

 <Email>parts@am.com</Email>

 </Customer>

 <Part color="black">

 <key>68</key>

 <Quantity>36</Quantity>

 <ExtendedPrice>34850.16</ExtendedPrice>

 <Tax>6.000000e-02</Tax>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>AIR </ShipMode>

 </Shipment>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>BOAT </ShipMode>

 </Shipment>

 </Part>

 </Order>’);

SELECT DB2XML.Content(order, ’dxx_install/samples/dad/getstart_column.dad’

, ’ibm-808’)

 from app1 where ID=1;

 Related tasks:

144 XML Extender Administration and Programming

|

|||||||||||||||||||||||||

|

|
|

|

||

|||

|||

|||
|

|||
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v “Method for retrieving an XML document” on page 78

 Related reference:

v “Retrieval functions in XML Extender” on page 141

Content(): retrieval from XMLCLOB to an external server file

 Purpose:

 Retrieves the XML content that is stored as an XMLCLOB type and stores it in an

external server file.

 Syntax:

�� Content (xmlobj , filename ,

targetencoding

)
 ��

Important: If a file with the specified name already exists, the content function

overrides its content.

 Parameters:

 Table 32. XMLCLOB to external server file parameters

Parameter Data type Description

xmlobj XMLCLOB as LOCATOR The XML document.

filename VARCHAR(512) The fully qualified server file

name.

targetencoding VARCHAR(100) The encoding of the output

file.

 Results:

 VARCHAR(512)

 Example:

 The following example retrieves the XML content that is stored as an XMLCLOB

type and stores it in an external file located on the server. The UDF encodes the

file in ’ibm-808’.

create table app1 (id int not null, "order" db2xml.xmlclob, row_id rowid

 not null generated always)

create lob tablespace t1lobtsp log no using stogroup sysdeflt priqty 16 secqty 16

create auxiliary table t1auxtbl in t1lobtsp stores app1 column problem_report

create type 2 unique index t1auxidx on t1auxtbl

INSERT into app1 (id, "order") values (1, ’<?xml version="1.0"?>

 <!DOCTYPE SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd"

->

 <Order key="1">

 <Customer>

 <Name>American Motors</Name>

 <Email>parts@am.com</Email>

 </Customer>

 <Part color="black">

 <key>68</key>

Chapter 8. XML Extender user-defined functions 145

|

|

|

|

|
|

|

|||||||||||||||||||||||||

|

|
|

|

||

|||

|||

|||
|

|||
|
|

|

|

|

|
|
|

#
#
#
#
#
#
#
#
|
|
|
|
|
|
|
|

<Quantity>36</Quantity>

 <ExtendedPrice>34850.16</ExtendedPrice>

 <Tax>6.000000e-02</Tax>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>AIR </ShipMode>

 </Shipment>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>BOAT </ShipMode>

 </Shipment>

 </Part>

 </Order>’);

SELECT DB2XML.Content(order,

’dxx_install/samples/db2xml/xml/getstart.xml’, ’ibm-808’)

 from app1 where ID=1;

Extraction functions

Extracting functions in XML Extender

 The extracting functions extract the element content or attribute value from an

XML document and return the requested SQL data types. The XML Extender

provides a set of extracting functions for various SQL data types. The extracting

functions take two input parameters. The first parameter is the XML Extender

UDT, which can be one of the XML UDTs. The second parameter is the location

path that specifies the XML element or attribute. Each extracting function returns

the value or content that is specified by the location path.

Because some element or attribute values have multiple occurrence, the extracting

functions return either a scalar or a table value; the former is called a scalar

function, the latter is called a table function.

extractInteger() and extractIntegers()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as INTEGER type.

 Syntax:

 Scalar function:

�� extractInteger (xmlobj , path) ��

 Table function:

�� extractIntegers (xmlobj , path) ��

 Parameters:

146 XML Extender Administration and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 33. extractInteger and extractIntegers function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 INTEGER

 Return codes:

 returnedInteger

 Examples:

 Scalar function example:

In the following example, one value is returned when the attribute value of key =

″1″. The value is extracted as an INTEGER.

CREATE TABLE t1(key INT);

INSERT INTO t1 values (

 DB2XML.extractInteger(DB2XML.XMLFile(’/samples/db2xml

 /xml/getstart.xml

 ’),

 ’/Order/Part[@color="black "]/key’));

SELECT * from t1;

Table function example:

In the following example, each order key for the sales orders is extracted as

INTEGER. The examples assume that you are using the DB2 UDB command shell,

in which you do not need to type “DB2” at the beginning of each command.

SELECT *

FROM TABLE(

 DB2XML.extractIntegers(DB2XML.XMLFile(’/samples/db2xml/xml/getstart.xml’),

’/Order/Part/key’)) AS X;

 Related concepts:

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

extractSmallint() and extractSmallints()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as SMALLINT type.

 Syntax:

 Scalar function:

�� extractSmallint (xmlobj , path) ��

Chapter 8. XML Extender user-defined functions 147

Table function:

�� extractSmallints (xmlobj , path) ��

 Parameters:

 Table 34. extractSmallint and extractSmallints function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 SMALLINT

 Return codes:

 returnedSmallint

 Examples:

 Scalar function example:

In the following example, the value of key in all sales orders is extracted as

SMALLINT. The examples assume that you are using the DB2 UDB command

shell, in which you do not need to type “DB2” at the beginning of each command.

CREATE TABLE t1(key INT);

INSERT INTO t1 values (

 DB2XML.extractSmallint(db2xml.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part[@color="black "]/key’));

SELECT * from t1;

Table function example:

In the following example, the value of key in all sales orders is extracted as

SMALLINT. The examples assume that you are using the DB2 UDB command

shell, in which you do not need to type “DB2” at the beginning of each command.

SELECT *

 FROM TABLE(

 DB2XML.extractSmallints(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part/key’)) AS X;

 Related concepts:

v “Using indexes for XML column data” on page 75

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

v “XML Extenders stored procedure return codes” on page 273

148 XML Extender Administration and Programming

|
|
|
|
|
|

extractDouble() and extractDoubles()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as DOUBLE type.

 Syntax:

 Scalar function:

�� extractDouble (xmlobj , path) ��

 Table function:

�� extractDoubles (xmlobj , path) ��

 Parameters:

 Table 35. extractDouble and extractDoubles function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned Type:

 DOUBLE

 Return Codes:

 returnedDouble

 Examples: Scalar function example:

 The following example automatically converts the price in an order from a

DOUBLE type to a DECIMAL. The examples assume that you are using the DB2

command shell, in which you do not need to type “DB2” at the beginning of each

command.

CREATE TABLE t1(price DECIMAL(9,2));

INSERT INTO t1 values (

 DB2XML.extractDouble(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part[@color="black "]/ExtendedPrice’));

SELECT * from t1;

Table function example:

In the following example, the value of ExtendedPrice in each part of the sales

order is extracted as DOUBLE. The examples assume that you are using the DB2

UDB command shell, in which you do not need to type DB2 UDB at the beginning

of each command.

SELECT CAST(RETURNEDDOUBLE AS DOUBLE)

 FROM TABLE(

 DB2XML.extractDoubles(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part/ExtendedPrice’)) AS X;

 Related concepts:

Chapter 8. XML Extender user-defined functions 149

v “UDTs and UDF names for XML Extender” on page 119

 Related reference:

v “Extracting functions in XML Extender” on page 146

extractReal() and extractReals()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as REAL type.

 Syntax:

 Scalar function:

�� extractReal (xmlobj , path) ��

 Table function:

�� extractReals (xmlobj , path) ��

 Parameters:

 Table 36. extractReal and extractReals function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 REAL

 Return codes:

 returnedReal

 Examples:

 Scalar function example:

In the following example, the value of ExtendedPrice is extracted as a REAL. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

CREATE TABLE t1(price DECIMAL(9,2));

INSERT INTO t1 values (

 DB2XML.extractReal(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part[@color="black"]/ExtendedPrice’));

SELECT * from t1;

Table function example:

In the following example, the value of ExtendedPrice is extracted as a REAL. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

150 XML Extender Administration and Programming

SELECT CAST(RETURNEDREAL AS REAL)

 FROM TABLE(

 DB2XML.extractReals(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part/ExtendedPrice’)) AS X;

 Related concepts:

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

v “XML Extender UDF return codes” on page 273

extractChar() and extractChars()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as CHAR type.

 Syntax:

 Scalar function:

�� extractChar (xmlobj , path) ��

 Table function:

�� extractChars (xmlobj , path) ��

 Parameters:

 Table 37. extractChar and extractChars function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 CHAR

 Return codes:

 returnedChar

 Examples:

 Scalar function example:

In the following example, the value of Name is extracted as CHAR. The examples

assume that you are using the DB2 UDB command shell, in which you do not

need to type “DB2” at the beginning of each command.

Chapter 8. XML Extender user-defined functions 151

CREATE TABLE t1(name char(30));

INSERT INTO t1 values (

 DB2XML.extractChar(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Customer/Name’));

SELECT * from t1;

Table function example:

In the following example, the value of Color is extracted as CHAR. The examples

assume that you are using the DB2 UDB command shell, in which you do not

need to type “DB2” at the beginning of each command.

SELECT *

 FROM TABLE(

 DB2XML.extractChars(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part/@color’)) AS X;

 Related reference:

v “Extracting functions in XML Extender” on page 146

v “How to read syntax diagrams” on page viii

extractVarchar() and extractVarchars()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as VARCHAR type.

 Syntax:

 Scalar function:

�� extractVarchar (xmlobj , path) ��

 Table function:

�� extractVarchars (xmlobj , path) ��

 Parameters:

 Table 38. extractVarchar and extractVarchars function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 VARCHAR(4K)

 Return codes:

 returnedVarchar

 Examples:

 Scalar function example:

152 XML Extender Administration and Programming

In a database with more than 1000 XML documents that are stored in the column

ORDER in the SALES_TAB table, you might want to find all the customers who

have ordered items that have an ExtendedPrice greater than 2500.00. The following

SQL statement uses the extracting UDF in the SELECT clause:

SELECT extractVarchar(Order, ’/Order/Customer/Name’) from sales_order_view

 WHERE price > 2500.00

The examples assume that you are using the DB2 UDB command shell, in which

you do not need to type “DB2” at the beginning of each command. The UDF

extractVarchar() takes the column ORDER as the input and the location path

/Order/Customer/Name as the select identifier. The UDF returns the names of the

customers. With the WHERE clause, the extracting function evaluates only those

orders with an ExtendedPrice greater than 2500.00.

Table function example:

In a database with more than 1000 XML documents that are stored in the column

ORDER in the SALES_TAB table, you might want to find all the customers who

have ordered items that have an ExtendedPrice greater than 2500.00. The following

SQL statement uses the extracting UDF in the SELECT clause:

SELECT extractVarchar(Order, ’/Order/Customer/Name’) from sales_order_view

 WHERE price > 2500.00

The examples assume that you are using the DB2 UDB command shell, in which

you do not need to type “DB2” at the beginning of each command. The UDF

extractVarchar() takes the column ORDER as the input and the location path

/Order/Customer/Name as the select identifier. The UDF returns the names of the

customers. With the WHERE clause, the extracting function evaluates only those

orders with an ExtendedPrice greater than 2500.00.

Scalar function example:

In the following example, the value of Name is extracted as VARCHAR. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

CREATE TABLE t1(name varchar(30));

INSERT INTO t1 values (

 DB2XML.extractVarchar(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Customer/Name’));

SELECT * from t1;

Table function example:

In the following example, the value of Color is extracted as VARCHAR. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

SELECT*

 FROM TABLE(

 DB2XML.extractVarchars(DB2XML.XMLFile(’dxx_install

 /samples/xml/getstart.xml’),

 ’/Order/Part/@color’)) AS X;

 Related concepts:

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

Chapter 8. XML Extender user-defined functions 153

Related reference:

v “Extracting functions in XML Extender” on page 146

v “XML Extender UDF return codes” on page 273

extractCLOB() and extractCLOBs()

 Purpose:

 Extracts a fragment of XML documents, with element and attribute markup and

content of elements and attributes, including sub-elements. This function differs

from the other extract functions, which return only the content of elements and

attributes. The extractClob(s) functions are used to extract document fragments,

whereas extractVarchar(s) and extractChar(s) are used to extract simple values.

 Syntax:

 Scalar function:

�� extractCLOB (xmlobj , path) ��

 Table function:

�� extractCLOBs (xmlobj , path) ��

 Parameters:

 Table 39. extractCLOB and extractCLOBs function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 CLOB(10K)

 Return codes:

 returnedCLOB

 Examples:

 Scalar function example:

In this example, all name element content and tags are extracted from a purchase

order. The examples assume that you are using the DB2 UDB command shell, in

which you do not need to type “DB2” at the beginning of each command.

CREATE TABLE t1(name DB2XML.xmlclob);

INSERT INTO t1 values (

 DB2XML.extractClob(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Customer/Name’));

SELECT * from t1;

Table function example:

154 XML Extender Administration and Programming

In this example, all of the color attributes are extracted from a purchase order. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

SELECT *

 FROM TABLE(

 DB2XML.extractCLOBs(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part/@color’)) AS X;

 Related concepts:

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

extractDate() and extractDates()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as DATE type. The date must be in the format: YYYY-MM-DD.

 Syntax:

 Scalar function:

�� extractDate (xmlobj , path) ��

 Table function:

�� extractDates (xmlobj , path) ��

 Parameters:

 Table 40. extractDate and extractDates function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 DATE

 Return codes:

 returnedDate

 Examples:

 Scalar function example:

In the following example, the value of ShipDate is extracted as DATE. The

examples assume that you are using the DB2 UDB command shell, in which you

do not need to type “DB2” at the beginning of each command.

Chapter 8. XML Extender user-defined functions 155

CREATE TABLE t1(shipdate DATE);

INSERT INTO t1 values (

 DB2XML.extractDate(DB2XML.xmlfile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part[@color="red "]/Shipment/ShipDate’));

SELECT * from t1;

Table function example:

In the following example, the value of ShipDate is extracted as DATE.

SELECT *

 FROM TABLE(

 DB2XML.extractDates(DB2XML.XMLFile(’dxx_install

 /samples/db2xml/xml/getstart.xml’),

 ’/Order/Part[@color="black "]/Shipment/ShipDate’)) AS X;

 Related concepts:

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

v “XML Extender UDF return codes” on page 273

extractTime() and extractTimes()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as TIME type.

 Syntax:

 Scalar function:

�� extractTime (xmlobj , path) ��

 Table function:

�� extractTimes (xmlobj , path) ��

 Parameters:

 Table 41. extractTime and extractTimes function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 TIME

 Return codes:

 returnedTime

 Examples:

 The examples assume that you are using the DB2 UDB command shell, in which

156 XML Extender Administration and Programming

you do not need to type “DB2” at the beginning of each command.

Scalar function example:

CREATE TABLE t1(testtime TIME);

INSERT INTO t1 values (

 DB2XML.extractTime(DB2XML.XMLCLOB(

 ’<stuff><data>11.12.13</data></stuff>’), ’//data’));

SELECT * from t1;

Table function example:

select *

from table(

 DB2XML.extractTimes(DB2XML.XMLCLOB(

 ’<stuff><data>01.02.03</data><data>11.12.13</data></stuff>’),

 ’//data’)) as x;

 Related concepts:

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

extractTimestamp() and extractTimestamps()

 Purpose:

 Extracts the element content or attribute value from an XML document and returns

the data as TIMESTAMP type.

 Syntax:

 Scalar function:

�� extractTimestamp (xmlobj , path) ��

 Table function:

�� extractTimestamps (xmlobj , path) ��

 Parameters:

 Table 42. extractTimestamp and extractTimestamps function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,

XMLFILE, or

XMLCLOB

The column name.

path VARCHAR The location path of the

element or attribute.

 Returned type:

 TIMESTAMP

 Return codes:

 returnedTimestamp

 Examples:

Chapter 8. XML Extender user-defined functions 157

The examples assume that you are using the DB2 UDB command shell, in which

you do not need to type “DB2” at the beginning of each command.

Scalar function example:

CREATE TABLE t1(testtimestamp TIMESTAMP);

INSERT INTO t1 values (

 DB2XML.extractTimestamp(DB2XML.XMLCLOB(

 ’<stuff><data>2003-11-11-11.12.13.888888</data></stuff>’),

 ’//data’));

SELECT * from t1;

Table function example:

select * from

table(DB2XML.extractTimestamps(DB2XML.XMLClob(

 ’<stuff><data>2003-11-11-11.12.13.888888

 </data><data>2003-12-22-11.12.13.888888</data></stuff>’),

 ’//data’)) as x;

XML Extender will automatically normalize timestamps extracted from XML

documents to comply with the DB2 timestamp format if needed. Timestamps are

normalized to the yyyy-mm-dd-hh.mm.ss.nnnnnn format or the yyyy-mm-dd-hh

mm.ss.nnnnnn format. For example:

2003-1-11-11.12.13

will be normalized to:

2003-01-11-11.12.13.000000

 Related concepts:

v “UDTs and UDF names for XML Extender” on page 119

v “Types of XML Extender user-defined functions” on page 137

 Related reference:

v “Extracting functions in XML Extender” on page 146

v “XML Extender UDF return codes” on page 273

Update functions in XML Extender

 The Update() function updates a specified element or attribute value in one or

more XML documents stored in the XML column. You can also use the default

casting functions to convert an SQL base type to the XML UDT.

Purpose

Takes the column name of an XML UDT, a location path, and a string of the

update value and returns an XML UDT that is the same as the first input

parameter. With the Update() function, you can specify the element or attribute

that is to be updated.

Syntax

�� Update (xmlobj , path , value) ��

158 XML Extender Administration and Programming

|
|
|
|

|

|

|

Parameters

 Table 43. The UDF Update parameters

Parameter Data type Description

xmlobj XMLVARCHAR, XMLCLOB

as LOCATOR

The column name.

path VARCHAR The location path of the

element or attribute.

value VARCHAR The update string.

Restriction: The Update

function does not have an

option to disable output

escaping; the output of an

extractClob (which is a

tagged fragment) cannot be

inserted using this function.

Use textual values only.

Restriction: Note that the Update UDF supports location paths that have

predicates with attributes, but not elements. For example, the following predicate is

supported:

’/Order/Part[@color="black "]/ExtendedPrice’

The following predicate is not supported:

’/Order/Part/Shipment/[Shipdate < "11/25/00"]’

Return type

 Data type Return type

XMLVARCHAR XMLVARCHAR

XMLCLOB as LOCATOR XMLCLOB

Example

The following example updates the purchase order handled by the salesperson

Sriram Srinivasan.

UPDATE sales_tab

 set order = db2xml.update(order, ’/Order/Customer/Name’, ’IBM’)

 WHERE sales_person = ’Sriram Srinivasan’

In this example, the content of /Order/Customer/Name is updated to IBM.

Usage

When you use the Update function to change a value in one or more XML

documents, it replaces the XML documents within the XML column. Based on

output from the XML parser, some parts of the original document are preserved,

while others are lost or changed. The following sections describe how the

document is processed and provide examples of how the documents look before

and after updates.

Chapter 8. XML Extender user-defined functions 159

How the Update() function processes the XML document

When the Update() function replaces XML documents, it must reconstruct the

document based on the XML parser output. Table 44 describes how the parts of the

document are handled, with examples.

 Table 44. Update function rules

Item or node

type

XML document code example Status after update

XML

declaration

<?xml version=’1.0’

 encoding=’utf-8’

 standalone=’yes’ >

The XML declaration is

preserved:

v Version information is

preserved.

v Encoding declaration is

preserved and appears when

specified in the original

document.

v Standalone declaration is

preserved and appears when

specified in the original

document.

v After update, single

quotation marks are used to

delineate values.

DOCTYPE Declaration The document type declaration

is preserved:

v Root element name is

supported.

v Public and system

ExternalIDs are preserved

and appear when specified

in the original document.

v Internal DTD subset is not

preserved. Entities are

replaced; defaults for

attributes are processed and

appear in the output

documents.

v After the update, double

quotation marks are used to

delineate public and system

URI values.

v The current XML4c parser

does not report an XML

declaration that does not

contain an ExternalID or

internal DTD subset. After

the update, the DOCTYPE

declaration would be

missing in this case.

<!DOCTYPE books SYSTEM

 "http://dtds.org/books.dtd" >

<!DOCTYPE books PUBLIC

 "local.books.dtd" "http://dtds.org/books.dtd" >

<!DOCTYPE books>

-Any of

<!DOCTYPE books

 (S ExternalID) ?

 [internal-dtd-subset] >

-Such as

<!DOCTYPE books

 [<!ENTITY mydog "Spot">] >?

 [internal-dtd-subset] >

Processing

Instructions

<?xml-stylesheet

 title="compact"

 href="datatypes1.xsl"

 type="text/xsl"?>

Processing instructions are

preserved.

160 XML Extender Administration and Programming

Table 44. Update function rules (continued)

Item or node

type

XML document code example Status after update

Comments <!-- comment --> Comments inside the root

element are preserved.

Comments outside the root

element are discarded.

Elements <books>

content

</books>

Elements are preserved.

Attributes id=’1’ date="01/02/2003" Attributes of elements are

preserved.

v After update, double

quotation marks are used to

delineate values.

v Data within attributes is lost.

v Entities are replaced.

Text Nodes This chapter is about

my dog &mydog;.

Text nodes (element content)

are preserved.

v Data within text nodes is

lost.

v Entities are replaced.

Multiple occurrence

When a location path is provided in the Update() UDF, the content of every

element or attribute with a matching path is updated with the supplied value. This

means that if a document has multiple occurring location paths, the Update()

function replaces the existing values with the value provided in the value

parameter.

You can specify a predicate in the path parameter to provide distinct locations

paths to prevent unintentional updates. The Update() UDF supports location paths

that have predicates with attributes, but not elements.

Examples

The following examples show instances of an XML document before and after an

update.

 Table 45. XML documents before and after an update

Example 1:

Before:

Chapter 8. XML Extender user-defined functions 161

Table 45. XML documents before and after an update (continued)

<?xml version=’1.0’ encoding=’utf-8’ standalone="yes"?>

<!DOCTYPE book PUBLIC "public.dtd" "system.dtd">

<?pitarget option1=’value1’ option2=’value2’?>

<!-- comment -->

<book>

 <chapter id="1" date=’07/01/1997’>

 <!-- first section -->

 <section>This is a section in Chapter

 One.</section>

 </chapter>

 <chapter id="2" date="01/02/1997">

 <section>This is a section in Chapter

 Two.</section>

 <footnote>A footnote in Chapter Two is

 here.</footnote>

 </chapter>

 <price date="12/22/1998" time="11.12.13"

 timestamp="1998-12-22-11.12.13.888888">

 38.281</price>

</book>

v Contains white

space in the

XML declaration

v Specifies a

processing

instruction

v Contains a

comment

outside of the

root node

v Specifies

PUBLIC

ExternalID

v Contains a

comment inside

of root note

After:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’?>

<!DOCTYPE book PUBLIC "public.dtd" "system.dtd">

<?pitarget option1=’value1’ option2=’value2’?>

<book>

 <chapter id="1" date="07/01/2003">

 <!-- first section -->

 <section>This is a section in Chapter

 One.</section>

 </chapter>

 <chapter id="2" date="01/02/2003">

 <section>This is a section in Chapter

 Two.</section>

 <footnote>A footnote in Chapter Two

 is here.</footnote>

 </chapter>

 <price date="12/22/2003" time="11.12.13"

 timestamp="2003-12-22-11.12.13.888888">

 60.02</price>

</book>

v White space

inside of

markup is

eliminated

v Processing

instruction is

preserved

v Comment

outside of the

root node is not

preserved

v PUBLIC

ExternalID is

preserved

v Comment inside

of root node is

preserved

v Changed value

is the value of

the <price>

element

Example 2:

Before:

<?xml version=’1.0’ ?>

<!DOCTYPE book>

<!-- comment -->

<book>

 ...

</book>

Contains

DOCTYPE

declaration

without an

ExternalID or an

internal DTD

subset. Not

supported.

After:

162 XML Extender Administration and Programming

Table 45. XML documents before and after an update (continued)

<?xml version=’1.0’?>

<book>

 ...

</book>

DOCTYPE

declaration is not

reported by the

XML parser and

not preserved.

Example 3:

Before:

<?xml version=’1.0’ ?>

<!DOCTYPE book [<!ENTITY myDog "Spot">]>

<!-- comment -->

<book>

 <chapter id="1" date=’07/01/1997’>

 <!-- first section -->

 <section>This is a section in Chapter

 One about my dog &;myDog;.</section>

 ...

 </chapter>

 ...

</book>

v Contains white

space in markup

v Specifies

internal DTD

subset

v Specifies entity

in text node

After:

<?xml version=’1.0’?>

<!DOCTYPE book>

<book>

 <chapter id="1" date="07/01/1997">

 <!-- first section -->

 <section>This is a section in Chapter

 One about my dog Spot.</section>

 ...

 </chapter>

 ...

</book>

v White space in

markup is

eliminated

v Internal DTD

subset is not

preserved

v Entity in text

node is resolved

and replaced

Validation functions

 DB2 XML Extender offers two user defined functions (UDFs) that validate XML

documents against either an XML schema or a DTD.

An element in an XML document is valid according to a given schema if the

associated element type rules are satisfied. If all elements are valid, the whole

document is valid. With a DTD, however, there is no way to require a specific root

element. The validation functions return 1 if the document is valid or they return 0

and write an error message in the trace file if the document is invalid. The

functions are:

db2xml.svalidate:

Validates an XML document instance against the specified schema.

db2xml.dvalidate:

Validates an XML document instance against the specified DTD.

Chapter 8. XML Extender user-defined functions 163

SVALIDATE() function

This function validates an XML document against a specified schema (or the one

named in the XML document) and returns 1 if the document is valid or 0 if not.

This function assumes that an XML document and a schema exist on the file

system or as a CLOB in DB2.

Before you run the SVALIDATE function, ensure that XML Extender is enabled

with your server by running the following command:

dxxadm enable_server -a subsystem-name wlm environment wlm-name1

If the XML document fails the validation, an error message is written to the XML

Extender trace file. Enable the trace before executing the DVALIDATE command.

See “Starting the trace for XML Extender” on page 271 for information on enabling

the trace.

Syntax

�� SVALIDATE (xmlobj)

,

schemadoc
 ��

Parameters

 Table 46. The SVALIDATE parameters

Parameter Data type Description

xmlobj VARCHAR(256) File path of the XML

document to be verified.

CLOB(2G) XML column that contains

the document to be verified.

schemadoc VARCHAR(256) File path of the schema

document.

CLOB(2G) XML column that contains

the schema.

Examples

Example 1: This example validates an XML document using the specified schema,

and both the document and schema are stored in DB2 UDB tables.

db2 select db2xml.svalidate(doc,schema) from equiplogs where id=1

DVALIDATE() function

This function validates an XML document against a specified DTD (or the one

named in the XML document) and returns 1 if the document is valid or 0 if not.

This function assumes that an XML document and a DTD exist on the file system

or as a CLOB in DB2.

Before you can execute the DVALIDATE function, ensure that XML Extender is

enabled with your server.

If the XML document fails the validation, an error message is written to the XML

Extender trace file. Enable the trace before executing the SVALIDATE command.

See “Starting the trace for XML Extender” on page 271 for information on enabling

the trace.

164 XML Extender Administration and Programming

Syntax

�� DVALIDATE (xmlobj)

,

dtddoc
 ��

Parameters

 Table 47. The DVALIDATE parameters

Parameter Data type Description

xmlobj VARCHAR(256) File path of the XML

document to be verified.

CLOB(2G) XML column that contains

the document to be verified.

dtddoc VARCHAR(256) File path of the DTD

document.

CLOB(2G) XML column that contains

the DTD, which is either

from the DTD_REF table or

from a regular table.

 Related reference:

v “Starting the trace for XML Extender” on page 271

Chapter 8. XML Extender user-defined functions 165

166 XML Extender Administration and Programming

Chapter 9. Document access definition (DAD) files

Creating a DAD file for XML columns

 This task is part of the larger task of defining and enabling an XML column.

See the XML Extender Web site at

www.ibm.com/software/data/db2/extenders/xmlext/downloads.html for the

most recent information about DAD files.

To access your XML data and enable columns for XML data in an XML table, you

need to define a document access definition (DAD) file. This file defines the

attributes and key elements of your data that need to be searched within the

column. For XML columns, the DAD file primarily specifies how documents stored

within it are to be indexed. The DAD file also specifies a DTD or schema to use for

validating documents that are inserted into the XML column. DAD files are stored

as a CLOB data type, and their size limit is 100 KB.

 Prerequisites:

 Before you create the DAD file, you need to:

v Decide which elements or attributes you expect to use often in your search. The

elements or attributes that you specify are extracted into the side tables for fast

searches by the XML Extender.

v Define the location path to represent each element or attribute indexed in a side

table. You must also specify the type of data that you want the element or

attribute to be converted to.

 Procedure:

 To create a DAD file:

1. Create a new document in a text editor and type the following syntax:

<?XML version="1.0"?>

<!DOCTYPE DAD SYSTEM <"path/dtd/dad.dtd">.

″path/dtd/dad.dtd ″ is the path and file name of the DTD for the DAD file. A

DTD is provided in dxx_install\samples\db2xml\dtd

2. Insert DAD tags after the lines from step 1.

<DAD>

</DAD>

This element will contain all the other elements.

3. Specify validation for the document and the column:

v If you want to validate your entire XML document against a DTD or schema

before it is inserted into the database:

– Insert the appropriate tag to specify how you want to validate the

document:

<dtdid>path/dtd_name.dtd</dtdid>

– Insert the following tag to validate the document using a schema:

© Copyright IBM Corp. 1999, 2004 167

|

|
|

|
|

|

|

<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>

</schemabindings>

– Validate the column by inserting the following tag:

<validation>YES</validation>

v If you don’t want to validate the document, use the following tag:

<validation>NO</validation>

4. Insert <Xcolumn> </Xcolumn> tags to specify that you are using XML columns

as the access and storage method for your XML data.

5. Specify side tables. For each side table that you want to create:

a. Specify a <table></table> tag. For example:

<table name="person_names">

</table>

b. Inside the table tags, insert a <column> tag for each column that you want

the side table to contain. Each column has four attributes: name, type, path

and, multi_occurrence.

Example:

<table name="person_names">>

<column name ="fname"

 type="varchar(50)"

 path="/person/firstName"

 multi_occurrence="NO"/>

<column name ="lname"

 type="varchar(50)"

 path="/person/lastName"

 multi_occurrence="NO"/>

</table>

Where:

name Specifies the name of the column that is created in the side table.

type Indicates the SQL data type in the side table for each indexed

element or attribute

path Specifies the location path in the XML document for each element

or attribute to be indexed

multi_occurrence

Indicates whether the element or attribute referred to by the path

attribute can occur more than once in the XML document. The

possible values for multi_occurrence are YES or NO. If the value is

NO, then multiple columns can be specified per table. If the value is

YES, you can specify only one column in the side table.
6. Save your file with a DAD extension.

The following example shows a complete DAD file:

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "c:\dxx_installsamples\db2xml\dtd\dad.dtd">

<DAD>

<dtid>C:\SG246130\code\person.dtd</dtdid>

<validation>YES</validation>

<Xcolumn>

 <table name="person_names">

 <column name="fname"

 type="varchar(50)"

 path="/person/firstName"

 multi_occurrence="NO"/>

 <column name="lname"

168 XML Extender Administration and Programming

|
|
|

|

|

type="varchar(50)"

 path="/person/lastName"

 multi_occurrence="NO"/>

</table>

<table name="person_phone_number">

 <column name="pnumber"

 type="varchar(20)"

 path="/person/phone/number"

 multi_occurrence="YES"/>

</table>

<table name="person_phone_number">

 <column name="pnumber"

 type="varchar(20)"

 path="/person/phone/number"

 multi_occurrence="YES"/>

</table>

<table name="pesron_phone_type">

 <column name="ptype"

 type="varchar(20)"

 path="/person/phone/type"

 multi_occurrence="YES"/>

</table>

<Xcolumn>

</DAD>

Now that you created a DAD file, the next step to defining and enabling an XML

column is to create the table in which your XML documents will be stored.

 Related concepts:

v “XML collections as a storage and access method” on page 91

v “DAD files for XML collections” on page 169

v “Dad Checker” on page 184

 Related tasks:

v “Using the DAD checker” on page 184

DAD files for XML collections

 For XML collections, the DAD file maps the structure of the XML document to the

DB2® tables from which you compose the document. You can also decompose

documents to the DB2 UDB tables using the DAD file.

For example, if you have an element called <Tax> in your XML document, you

need to map <Tax> to a column called TAX. You use the DAD file to define the

relationship between the XML data and the relational data.

You must specify the DAD file either while enabling a collection, or when you are

using the DAD file in stored procedures for XML collections. The DAD is an

XML-formatted document, residing at the client. If you choose to validate XML

documents with a DTD, the DAD file can be associated with that DTD. When used

as the input parameter of the XML Extender stored procedures, the DAD file has a

data type of CLOB. This file can be up to 100 KB.

To specify the XML collection access and storage method, use the <Xcollection> tag

in your DAD file.

<Xcollection>

Specifies that the XML data is either to be decomposed from XML

Chapter 9. Document access definition (DAD) files 169

documents into a collection of relational tables, or to be composed into

XML documents from a collection of relational tables.

 An XML collection is a set of relational tables that contains XML data.

Applications can enable an XML collection of any user tables. These user

tables can be tables of existing business data or tables that XML Extender

recently created.

The DAD file defines the XML document tree structure, using the following kinds

of nodes:

root_node

Specifies the root element of the document.

element_node

Identifies an element, which can be the root element or a child element.

text_node

Represents the CDATA text of an element.

attribute_node

Represents an attribute of an element.

Figure 14 shows a fragment of the mapping that is used in a DAD file. The nodes

map the XML document content to table columns in a relational table.

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM ""c:\dxx\samples\db2xml\dtd\dad.dtd">

<DAD>

 ...

<Xcollection>

<SQL_stmt>

 ...

</SQL_stmt>

<prolog>?xml version="1.0"?</prolog>

<doctype>!DOCTYPE Order SYSTEM

 ""c:\dxx\samples\db2xml\dtd\getstart.dtd""</doctype>

<root_node>

 <element_node name="Order"> --> Identifies the element <Order>

 <attribute_node name="key"> --> Identifies the attribute "key"

 <column name="order_key"/> --> Defines the name of the column,

 "order_key", to which the

 element and attribute are

 mapped

 </attribute_node>

 <element_node name="Customer"> --> Identifies a child element of

 <Order> as <Customer>

 <text_node> --> Specifies the CDATA text for

 the element <Customer>

 <column name="customer"> --> Defines the name of the column,

 "customer", to which the child

 element is mapped

 </text_node>

 </element_node>

 ...

 </element_node>

 ...

</root_node>

</Xcollection>

</DAD>

Figure 14. Node definitions for the XML document as mapped to the XML collection table

170 XML Extender Administration and Programming

In this example, the first two columns have elements and attributes mapped to

them.

The XML Extender also supports processing instructions for stylesheets, using the

<stylesheet> element. It must be inside the root node of the DAD file, with the

doctype and prolog defined for the XML document. For example:

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet type="text/css" href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

Use any text editor to create and update a DAD file.

 Related concepts:

v “Mapping schemes for XML collections” on page 104

SQL composition

You can compose XML documents using columns with the same name. Selected

columns with the same name, even if from diverse tables, must be identified by a

unique alias so that every variable in the select clause of the SQL statement is

different. The following example shows how you would give unique aliases to

columns that have the same names.

<SQL_stmt>select o.order_key as oorder_key,

 key customer_name, customer_email,

 p.part_key p.order_key as porder_key,

 color, qty, price, tax, ship_id, date, mode

 from order_tab o.part_tab p

 order by order_key, part_key</SQL_stmt>

You can also compose XML documents using columns with generated random

values. If an SQL statement in a DAD file has a random value, you must give the

random value function an alias to use it in the ORDER BY clause. This requirement

is necessary because the value is not associated with any column in a given table.

See the alias for generate_unique at the end of the ORDER BY clause in the

following example.

<SQL_stmt>select o.order_key, customer_name,customer_email,

 p.part_key,color,qty,price,tax,ship_id,

 date, mode

 from order_tab o,part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

as ship_id, date, mode,

 part_key

 from ship_tab) s

 where o.order_key=1 and p.price>2000 and

 o.order_key=o.order_key and s.part_key

 order by order_key, part_key,ship_id</SQL_stmt>

RDB node composition

The following restrictions apply to RDB node composition:

v The condition associated with any non-root_node RDB node DAD file must

compare against a literal.

v Each equality in the condition associated with a top-level RDB_node specifies

the join relationship between columns of two tables and is applied separately

Chapter 9. Document access definition (DAD) files 171

from the other equalities. That is, all the predicates connected by AND do not

apply simultaneously for a single join condition; they simulate an outer join

when the document is composed. The parent-child relationship between each

pair of tables is determined by their relative nesting in the DAD file. For

example:
<condition>order_tab.order_key=part_tab.order_key AND

part_tab.part_key=ship_tab.part_key</condition>

Composition from rows that have null values

You can use columns that have null values to compose XML documents.

The following example illustrates how you can generate an XML document form a

table MyTable which has a row containing a null value in column Col 1. The DAD

used in the example is nullcol.dad.

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

<validation>NO validation>NO>

<Xcollection>

<SQL_stmt>SELECT 1 as X, Col1 FROM MyTable order by X, Col1<\SQL_stmt>

<prolog>?xml version="1.0"?prolog>?xml version="1.0"?>

<doctype>!DOCTYPE Order SYSTEM "e:\t3xml\x.dtd">

<root_node>

<element_node name="MyColumn">

<element_node name="Column1" multi_occurrence="YES">

 <text_node>

 <column name="Col1"/>

 </text_node>

 </element_node>

</element_node>

</roott_node>

</Xcollection>

</DAD>

MyTable

| Col 1 |

|__________|

| 1 |

|__________|

| 3 |

|__________|

| — |

|__________|

Run tests2x mydb nullcol.dad result_tab or use dxxGenXML to produce the

following document: Note that the third Column1 element represents a null value.

<?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "e:\t3xml\x.dtd">

<MyColumn>

 <Column1>1</Column1>

 <Column1>3</Column1>

 <Column1></Column1>

</MyColumn>

v The condition associated with any non-root_node RDB node DAD file must

compare against a literal.

v The condition associated with any lower level RDB node in the DAD must

compare against a literal.

172 XML Extender Administration and Programming

v The condition associated with a root_node describes the relationship between the

tables involved in the RDB node composition. An example is a primary foreign

key relationship.

v Each equality in the condition associated with a top-level RDB_node specifies

the join relationship between columns of two tables and is applied separately

from the other equalities. That is, all the predicates connected by AND do not

apply simultaneously for a single join condition, they simulate an outer join

when the document is composed. The parent-child relationship between each

pair of tables is determined by their relative nesting in the DAD file. For

example:
<condition>order_tab.order_key=part_tab.order_key AND

part_tab.part_key=ship_tab.part_key</condition>

DTD for the DAD file

 This topic describes the document type declarations (DTD) for the document access

definition (DAD) file. The DAD file itself is a tree-structured XML document and

requires a DTD. The DTD file name is dad.dtd. The following example shows the

DTD for the DAD file.

<?xml encoding="US-ASCII"?>

 <!ELEMENT DAD ((schemabindings | dtdid)?, validation,

 (Xcolumn | Xcollection))>

 <!ELEMENT dtdid (#PCDATA)>

 <!ELEMENT schemabindings (nonamespacelocation)>

 <!ELEMENT nonamespacelocation (empty)>

 <!ATTLIST nonamespacelocation location CDATA #REQUIRED>

 <!ELEMENT validation (#PCDATA)>

 <!ELEMENT Xcolumn (table+)>

 <!ELEMENT table (column+)>

 <!ATTLIST table name CDATA #REQUIRED

 key CDATA #IMPLIED

 orderBy CDATA #IMPLIED>

 <!ELEMENT column EMPTY>

 <!ATTLIST column

 name CDATA #REQUIRED

 type CDATA #IMPLIED

 path CDATA #IMPLIED

 multi_occurrence CDATA #IMPLIED>

 <!ELEMENT Xcollection (SQL_stmt?, prolog, doctype, root_node)>

 <!ELEMENT SQL_stmt (#PCDATA)>

 <!ELEMENT prolog (#PCDATA)>

 <!ELEMENT doctype (#PCDATA | RDB_node)*>

 <!ELEMENT root_node (element_node)>

 <!ELEMENT element_node (RDB_node*,

 attribute_node*,

 text_node?,

 element_node*,

 namespace_node*,

 process_instruction_node*,

 comment_node*)>

 <!ATTLIST element_node

 name CDATA #REQUIRED

 ID CDATA #IMPLIED

 multi_occurrence CDATA "NO"

 BASE_URI CDATA #IMPLIED>

 <!ELEMENT attribute_node (column | RDB_node)>

 <!ATTLIST attribute_node

 name CDATA #REQUIRED>

 <!ELEMENT text_node (column | RDB_node)>

 <!ELEMENT RDB_node (table+, column?, condition?)>

Chapter 9. Document access definition (DAD) files 173

|
|

|
|
|

<!ELEMENT condition (#PCDATA)>

 <!ELEMENT comment_node (#PCDATA)>

 <!ELEMENT process_instruction_node (#PCDATA)>

The DAD file has four major elements:

v DTDID

v validation

v Xcolumn

v Xcollection

Xcolumn and Xcollection have child element and attributes that aid in the mapping

of XML data to relational tables in DB2. The following list describes the major

elements and their child elements and attributes. Syntax examples are taken from

the previous example.

DTDID element

DTDs that are provided to XML Extender are stored in the DTD_REF table.

Each DTD is identified by a unique ID that is provided in the DTDID tag of

the DAD file. The DTDID points to the DTD that validates the XML

documents, or guides the mapping between XML collection tables and

XML documents. For XML collections, this element is required only for

validating input and output XML documents. For XML columns, this

element is needed only to validate input XML documents. The DTDID must

be the same as the SYSTEM ID specified in the doctype of the XML

documents.

 Syntax: <!ELEMENT dtdid (#PCDATA)>

validation element

Indicates whether the XML document is to be validated with the DTD for

the DAD. If YES is specified, then the DTDID must also be specified.

 Syntax: <!ELEMENT validation(#PCDATA)>

Xcolumn element

Defines the indexing scheme for an XML column. It is composed of zero or

more tables.

 Syntax: <!ELEMENT Xcolumn (table*)>Xcolumn has one child element,

table.

table element

Defines one or more relational tables created for indexing elements or

attributes of documents stored in an XML column.

 Syntax:

<!ELEMENT table (column+)>

 <!ATTLIST table name CDATA #REQUIRED

 key CDATA #IMPLIED

 orderBy CDATA #IMPLIED>

The table element has one mandatory and two implied attributes:

name attribute

Specifies the name of the side table.

key attribute

The primary single key of the table.

174 XML Extender Administration and Programming

orderBy attribute

The names of the columns that determine the sequence order of

multiple-occurring element text or attribute values when

generating XML documents.

The table element has one child element:

column element

Maps an attribute of a CDATA node from the input XML

document to a column in the table.

 Syntax:

<!ATTLIST column

 name CDATA #REQUIRED

 type CDATA #IMPLIED

 path CDATA #IMPLIED

 multi_occurrence CDATA #IMPLIED>

The column element has the following attributes:

name attribute

Specifies the name of the column. It is the alias name of

the location path that identifies an element or attribute.

type attribute

Defines the data type of the column. It can be any SQL

data type.

path attribute

Shows the location path of an XML element or attribute

and must be the simple location path as specified in Table

3.1.a.

multi_occurrence attribute

Specifies whether this element or attribute can occur more

than once in an XML document. Values can be YES or NO.

Xcollection

Defines the mapping between XML documents and an XML collection of

relational tables.

 Syntax:

<!ELEMENT Xcollection(SQL_stmt?, prolog, doctype, root_node)>

Xcollection has the following child elements:

SQL_stmt

Specifies the SQL statement that XML Extender uses to define the

collection. Specifically, the statement selects XML data from the

XML collection tables, and uses the data to generate the XML

documents in the collection. The value of this element must be a

valid SQL statement. It is only used for composition, and only a

single SQL_stmt is allowed.

 Syntax: <!ELEMENT SQL_stmt #PCDATA >

prolog

The text for the XML prolog. The same prolog is supplied to all

documents in the entire collection. The value of prolog is fixed.

 Syntax: <!ELEMENT prolog #PCDATA>

Chapter 9. Document access definition (DAD) files 175

doctype

Defines the text for the XML document type definition.

 Syntax:

<!ELEMENT doctype (#PCDATA | RDB_node)*>

doctype is used to specify the DOCTYPE of the resulting

document. Define an explicit value. This value is supplied to all

documents in the entire collection.

 doctype has one child element:

root_node

Defines the virtual root node. root_node must have one required

child element, element_node, which can be used only once. The

element_node under the root_node is actually the root_node of the

XML document.

 Syntax: <!ELEMENT root_node(element_node)>

RDB_node

Defines the DB2 UDB table where the content of an XML element

or value of an XML attribute is to be stored or from where it will

be retrieved. rdb_node is a child element of element_node,

text_node, and attribute_node and has the following child

elements:

table Specifies the table in which the element or attribute content

is stored.

column

Specifies the column in which the element or attribute

content is stored.

condition

Specifies a condition for the column. Optional.

element_node

Represents an XML element. It must be defined in the DAD

specified for the collection. For the RDB_node mapping, the root

element_node must have an RDB_node to specify all tables

containing XML data for itself and all of its child nodes. It can

have zero or more attribute_nodes and child element_nodes, as

well as zero or one text_node. For elements other than the root

element no RDB_node is needed.

 Syntax:

 An element_node is defined by the following child elements:

RDB_node

(Optional) Specifies tables, column, and conditions for

XML data. The RDB_node for an element needs to be

defined only for the RDB_node mapping. In this case, one

or more tables must be specified. The column is not

needed because the element content is specified by its

text_node. The condition is optional, depending on the

DTD and query condition.

child nodes

Optional: An element_node can also have the following

child nodes:

176 XML Extender Administration and Programming

element_node

Represents child elements of the current XML

element.

attribute_node

Represents attributes of the current XML element.

text_node

Represents the CDATA text of the current XML

element.

attribute_node

Represents an XML attribute. It is the node that defines the

mapping between an XML attribute and the column data in a

relational table.

 Syntax:

 The attribute_node must have definitions for a name attribute, and

either a column or a RDB_node child element. attribute_node has

the following attribute:

name The name of the attribute.

attribute_node has the following child elements:

column

Used for the SQL mapping. The column must be specified

in the SELECT clause of SQL_stmt.

RDB_node

Used for the RDB_node mapping. The node defines the

mapping between this attribute and the column data in the

relational table The table and column must be specified.

The condition is optional.

text_node

Represents the text content of an XML element. It is the node that

defines the mapping between an XML element content and the

column data in a relational table.

 Syntax: It must be defined by a column or an RDB_node child

element:

column

Needed for the SQL mapping. In this case, the column

must be in the SELECT clause of SQL_stmt.

RDB_node

Needed for the RDB_node mapping. The node defines the

mapping between this text content and the column data in

the relational table. The table and column must be

specified. The condition is optional.

 Related concepts:

v “DAD files for XML collections” on page 169

 Related tasks:

v “Dynamically overriding values in the DAD file” on page 178

Chapter 9. Document access definition (DAD) files 177

Dynamically overriding values in the DAD file

 Procedure:

 For dynamic queries you can use two optional parameters to override conditions

in the DAD file: override and overrideType. Based on the input from overrideType, the

application can override the <SQL_stmt> tag values for SQL mapping or the

conditions in RDB_nodes for RDB_node mapping in the DAD.

These parameters have the following values and rules:

overrideType

This parameter is a required input parameter (IN) that flags the type of the

override parameter. The overrideType parameter has the following values:

NO_OVERRIDE

Specifies not to override a condition in the DAD file.

SQL_OVERRIDE

Specifies to override a condition in the DAD file with an SQL statement.

XML_OVERRIDE

Specifies to override a condition in the DAD file with an XPath-based

condition.

override

This parameter is an optional input parameter (IN) that specifies the override

condition for the DAD file. The syntax of the input value corresponds to the

value specified on the overrideType parameter:

v If you specify NO_OVERRIDE, the input value is a NULL string.

v If you specify SQL_OVERRIDE, the input value is a valid SQL statement.

If you use SQL_OVERRIDE as an SQL statement, you must use the SQL

mapping scheme in the DAD file. The input SQL statement overrides the

SQL statement specified by the <SQL_stmt> element in the DAD file.

v If you specify XML_OVERRIDE, the input value is a string that contains one

or more expressions.

If you use XML_OVERRIDE and an expression, you must use the RDB_node

mapping scheme in the DAD file. The input XML expression overrides the

RDB_node condition specified in the DAD file. The expression uses the

following syntax:

��

�

 AND

simple location path

=

value

>

<

<>

>=

<=

LIKE

��

This syntax has the following components:

simple location path

Specifies a simple location path, using syntax defined by XPath..

178 XML Extender Administration and Programming

operators

The SQL operators shown in the syntax diagram can have a space to

separate the operator from the other parts of the expression.

 Spaces around the operators are optional. Spaces are mandatory around

the LIKE operator.

value

A numeric value or a string enclosed in single quotation marks.

AND

And is treated as a logical operator on the same location path. If a

simple location path is specified more than once in the override string,

then all the predicates for that simple location path are applied

simultaneously.
If you specify XML_OVERRIDE, the condition for the RDB_node in the

text_node or attribute_node that matches the simple location path is

overridden by the specified expression.

XML_OVERRIDE is not completely XPath compliant. The simple location

path is used only to identify the element or attribute that is mapped to a

column.

 The following examples use SQL_OVERRIDE and XML_OVERRIDE to show

dynamic override.

Example 1: A stored procedure using SQL_OVERRIDE. In this example, the

<xcollection> element in the DAD file must have an <SQL_stmt> element. The

override parameter overrides the value of <SQL_stmt>, by changing the price to be

greater than 50.00, and the date to be greater than 1998-12-01.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

char result_tab[32]; /* name of the result table */

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL*/

char override[512]; /* override */

short overrideType; /* defined in dxx.h */

short max_row; /* maximum number of rows */

short num_row; /* actual number of rows */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short collectionName_ind;

short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;+

short numrow_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

float price_value;

/* create table */

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */

strcpy(collection, "sales_ord");

Chapter 9. Document access definition (DAD) files 179

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0] = ’\0’;

/* get the price_value from some place, such as from data */

price_value = 1000.00 /* for example */

/* specify the override */

sprintf(override,

 " SELECT o.order_key, customer, p.part_key,

 quatity, price, tax, ship_id, date, mode

 FROM order_tab o, part_tab p,

 table(select db2xml.generate_unique()

 as ship_id, date, mode from ship_tab) s

 WHERE p.price > %d and s.date >’1996-06_01’ AND

 p.order_key = o.order_key and s.part_key = p.part_key",

 price_value);

overrideType = SQL_OVERRIDE;

max_row = 0;

num_row = 0;

returnCode = 0;

msg_txt[0] = ’\0’;

collectionName_ind = 0;

rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = 0;

ovtype_ind = 0;

maxrow_ind = 0;

numrow_ind = -1;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXRETRIEVEXML" (:collectionName:collectionName_ind,

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

Example 2: A stored procedure using XML_OVERRIDE. In this example, the

<collection> element in the DAD file has an RDB_node for the root element_node.

The override value is XML-content based. The XML Extender converts the simple

location path to the mapped DB2 UDB column.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

char result_tab[32]; /* name of the result table */

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL*/

char override[256]; /* override, SQL_stmt*/

short overrideType; /* defined in dxx.h */

short max_row; /* maximum number of rows */

180 XML Extender Administration and Programming

short num_row; /* actual number of rows */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short collectionName_ind;

short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;

short numrow_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

/* create table */

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */

strcpy(collection, "sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0] = ’\0’;

sprintf(override,"%s %s",

 "/Order/Part Price > 50.00 AND ",

 "/Order/Part/Shipment/ShipDate > ’1998-12-01’");

overrideType = XML_OVERRIDE;

max_row = 500;

num_row = 0;

returnCode = 0;

msg_txt[0] = ’\0’;

collectionName_ind = 0;

rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = 0;

ovtype_ind = 0;

maxrow_ind = 0;

numrow_ind = -1;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXRETRIEVE"

 (:collectionName:collectionName_ind,

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

Multiple Overrides

XML Extender supports multiple overrides on the same path. All overrides

specified to the RDB node will be accepted.

Chapter 9. Document access definition (DAD) files 181

You can specify multiple XML overrides on the same location path to refine set

conditions in your search. In the following example, an XML document is

composed from the two tables using the test.dad file.

 Table 48. Department Table

Department Number Department Name

10 Engineering

20 Operations

30 Marketing

 Table 49. Employee Table

Employee Number Department Number Salary

123 10 $98,000.00

456 10 $87,000.00

111 20 $65,000.00

222 20 $71,000.00

333 20 $66,000.00

500 30 $55,000.00

The DAD file test.dad illustrated below contains a condition comparing the

variable deptno with the value 10. To expand the search to greater than 10 and less

than 30, you must override this condition. You must set the override parameter

when calling dXXGenXML as follows:

/ABC.com/Department>10 AND /ABC.com/Department<30

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "C:\dxx_xml\test\dtd\dad.dtd">

<DAD>

<dtdid>E:\dtd\lineItem.dtd</dtdid>

<validation>NO</validation>

<Xcollection>

<porlog>?xmol version="1.0"?</prolog>

<doctype>!DOCTYPE Order SYSTEM "C:\dxx_xml\test\dtd\LineItem.dtd"</doctype>

<root_node>

<element_node name="ABC.com">

<TDB_node>

<table name="dept" key="deptno"/>

<table name="empl" key="emplno"/>

<condition>dept deptno=empl.deptno</condition>

</RDB_node>

<element_node name="Department" multi_occurrence="YES">

<text_node>

<RDB_node>

<table name="dept"/>

<column name="deptno">

<condition>deptno=10</condition><RDB_node></RDB_node><text_node></text_node>

<element_node name="Employees" multi_occurrence="YES">

<text_node>

<RDB_node>

<table name="dept"><column name="deptnot"><condition>deptno=10</condition>

</table></RDB_node></text_node>

<element_node name="Employees" multi_occurence="YES">

182 XML Extender Administration and Programming

<element_node name="EmployeeNo">

<text_node>

<RDB_node>

<table name="empl"><column name="emplno"><condition>emplno<500</condition>

</table></RDB_node></text_node></element_node>

<element_node name="Salary">

<text_node>

<RDB_node>

<table name="empl"><column name="salary"><condition>salary>5000.00</condition>

</table></RDB_node></text_node></element_node></element_node></element_node>

To compose an XML document without an override, enter tests2x mydb test.dad

result_tab or you can invoke dxxGenXML without setting an override. This will

generate a document similar to this:

<?xml version="1.0">

<!DOCTYPE Order SYSTEM "C:\dxx_xml\test\dtd\LineItem.dtd">

<ABC.com>

<Department>10

<Employees>

<EmployeeNo>123</EmployeeNO>

<Salary>98,000.00</Salary>

</Employees>

<Employees>

<EmployeeNo>456</EmployeeNo>

<Salary>87,000.00</Salary>

</Employees>

</Department>

</ABC.COM>

To override the DAD file you can invoke dxxGenXML as mentioned above, or you

can run the test2x program with the specified conditions:

tests2x mydb test.dad result_tab -o 2 ″/ABC.com/Department>10 AND

/ABC.com/Department<30″

<?xml version="1.0">

<!DOCTYPE Order SYSTEM "C:\dxx_xml\test\dtd\LineItem.dtd">

<ABC.com>

<Department>20

<Employees>

<EmployeeNo>111</EmployeeNo>

<Salary>65,000.00</Salary>

</Employees>

<EmployeeNo>222</EmployeeNo>

<Salary>71,000.00</Salary>

</Employees>

<Employees>

<EmployeeNo>333</EmployeeNo>

<Salary>66,000.00</Salary>

</Employees>

</Department>

</ABC.com>

 Related concepts:

v “DAD files for XML collections” on page 169

v “Dad Checker” on page 184

Chapter 9. Document access definition (DAD) files 183

Related tasks:

v “Creating a DAD file for XML columns” on page 167

v “Using the DAD checker” on page 184

 Related reference:

v “DTD for the DAD file” on page 173

Dad Checker

 The DAD checker can be used to verify the validity of DAD files that use the XML

collection storage method. In each DAD file a mapping scheme that specifies the

relationship between the tables and the structure of the XML document is

specified.

Much like document type descriptions (DTDs) are used to validate the syntax of

XML documents, the DAD checker is used to ensure that a DAD file is

semantically correct. This validation can take place without connecting to a

database. Use of the DAD checker can help minimize the number of errors that

occur when submitting the file to the XML Extender for processing. The DAD

checker is a Java™ application that is called from the command line. When

invoked, it produces a set of two output files that contain errors, warnings, and

success indicators. The two files are equivalent; one is a plain text file that you use

to check for errors or warnings; the other is an XML file, errorsOutput.xml, which

communicates the results of the DAD checker application to other applications.

The name of the output text file is user-defined. If no name is specified, the

standard output is used.

 Related concepts:

v “DAD files for XML collections” on page 169

 Related tasks:

v “Dynamically overriding values in the DAD file” on page 178

v “Creating a DAD file for XML columns” on page 167

v “Using the DAD checker” on page 184

Using the DAD checker

 Prerequisites:

 You must have a JRE or JDK Version 1.3.1 or later installed on your system.

 Procedure:

 To use the DAD checker:

1. Download the DADChecker.zip file, and extract all files into a directory of your

choice.

2. From a command line change to the /bin subdirectory in the directory where

you installed the DAD checker.

3. Set the classpath by running the setCP.bat file, located in the /bin directory.

4. Run the following command:

java dadchecker.Check_dad_xml [-dad | -xml] [-all][-tag tagname]

[-out outputFile] fileToCheck

184 XML Extender Administration and Programming

Where:

-dad

indicates that the file that is to be checked is a DAD file. This is the default

option.

-xml

indicates that the file that is to be checked is an XML document rather than

a DAD file. For large XML documents, the Java Virtual Machine might run

out of memory, which produces a java.lang. OutOfMemoryError exception.

In such cases, the -Xmx option can be used to allocate more memory to the

Java Virtual Machine. See the JDK documentation for details.

-all

indicates that the output will show all occurrences of tags that are in error.

-tag

indicates that only the duplicate tags whose name attribute values are

tagname are displayed. For XML documents, only the duplicate tags whose

name are tagname are displayed.

-out

outputFile specifies the output text file name. If omitted, the standard

output is used. A second output file, errorsOutput.xml is also created in

the same directory as the DAD file. This file is always generated and

contains in XML form the same information as the output text file except

the parser warnings and errors.

To display command-line options, type java dadchecker.Check_dad_xml help.

To display version information, type java dadchecker.Check_dad_xml version.

 Sample files for Dad Checker:

 The following sample files can be found in the samples directory:

bad_dad.dad

sample DAD file that demonstrates all possible semantic errors.

bad_dad.chk

output text file that is generated by the DAD checker for bad_dad.dad.

bad_dad.chk

output text file that is generated by the DAD checker for bad_dad.dad.

errorsOutput.xml

output XML file that is generated by the DAD checker for bad_dad.dad.

dup.xsl

XSL stylesheet used for transforming the errorsOutput.xml file into an

HTML file that shows only the duplicate tags.

dups.html

generated HTML file that shows only the duplicate tags contained in

bad_dad.dad.

 Errors and warnings in the output text file:

 Errors and warnings are indicated by tag occurrence. Two tags are considered as

occurrences of the same tag if:

v Their name attributes have the same value.

Chapter 9. Document access definition (DAD) files 185

v They have the same number of ancestors.

v The name attributes of their corresponding ancestor tags have the same value.

Occurrences of the same tag could potentially have different children tags.

Tag occurrences that do not conform to the DAD semantic rules are indicated in

the output text file in the following way:

v All ancestor tags and their attributes are displayed in sequence.

v The tag that is in error is displayed, preceded by a number indicating its depth

in the XML tree. The tag name is followed by a list of line numbers where all

occurrences of the tag appear in the DAD file. You can display each error

occurrence separately by using the -all command line option.

v The direct children tags of the first tag occurrence are displayed. For those

children tags that specify a data mapping, the data mapping tags are also

displayed. You can use the -all command line option to display each error

occurrence separately.

 Sample of an error report for DAD Checker:

 In this example, the element_node tag whose name attribute has the value

″Password″ is in error. There are two occurrences of this tag in the DAD file, one

on line 49, and one on line 75. The tag in error can be isolated from the list of

ancestor and children tags by locating the tag’s depth indicator (in this example 4).

The list of ancestor and children tags help establish the context in which the error

occurred.

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="Password"> line(s): 49 75

 <element_node name="Pswd1">

 <element_node name="Pswd2">

If you had used the all option, the output text file would look like this:

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="Password"> line: 49

 <element_node name="Pswd1">

 <element_node name="Pswd2">

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="Password"> line: 75

 <element_node name="Pswd1">

 <element_node name="Pswd3">

In this example, two occurrences have identical ancestors and name attribute

values, but different children elements.

Checks performed by the DAD checker

When you invoke the DAD checker you receive the following message:

Checking DAD document: file_path

186 XML Extender Administration and Programming

where file_path is the path to the DAD file being validated.

The DAD checker performs the following validation checks:

1. Well-formedness checking and DTD validation.

2. Duplicate <attribute_node> and leaf <element_node> detection (RDB_node

mapping).

3. Missing type attribute detection.

4. Missing table declaration detection.

5. Missing <text_node> or <attribute_node> detection.

6. <attribute_node> and <element_node> mapping order check.

7. Data mapping consistency check for tags with identical name attribute values.

8. Multi_occurrence attribute value checking for parent <element_node> with

mapped children (RDB_node mapping).

9. Attribute and element potential naming conflict check (XML documents).

These validation checks are described in the following sections.

Well-formedness and DTD validation

DAD files must be validated against the DAD DTD, which is located in

″c:\dxx_installsamples\db2xml\dtd\dad.dtd″ If the DAD file is not well-formed or

if the DTD cannot be found, a fatal error occurs that causes the DAD checker to

terminate, and is indicated in the output text file. For example:

org.xml.sax.SAXException: Stopping after fatal error,

line 1, col 22. The XML declaration must end with "?>".

Validation errors and warnings are also reported in the output text file, but do not

cause the DAD checker to terminate. The following example is a fragment of an

output text file showing two possible validation errors that can be encountered

while parsing the DAD file:

 ** The document is not valid against the DTD, line 5, col 15. Element type

 "XCollection" must be declared

** The document is not valid against the DTD, line 578, col 21. The content of

 element type "text_node" must match "(column|RDB_node)".

Duplicate <attribute_node> and leaf <element_node> detection

(RDB_node mapping)

This check is relevant only to DAD files that use RDB_node mapping.

Two elements are considered to be duplicates if two or more <attribute_node> or

<element_node> tags have the same value in their name attribute and they have

the same ancestor.

Two or more tags are considered to have the same ancestors if the name attributes

of their corresponding ancestor tags have the same value.

A leaf <element_node> is an element_node that is used to map a tag that has no

children in the XML document tree. Therefore, leaf <element_node> tags must

have one text node tag as one of their direct children. No other <element_node>

tags can have text node tags as direct children.

This conflict might arise either between two or more leaf <element_node> tags,

between two or more <attribute_node> tags, or between leaf <element_node> tags

and <attribute_node> tags.

Chapter 9. Document access definition (DAD) files 187

Examples:

Example 1:

Leaf <element_node> conflict:

<element_node name = "A1">

 <element_node name = "B">

 <element_node name = "C">

 <text_node

<element_node name = "A2">

 <element_node name = "B">

 <element_node name = "C">

 <text_node>

</element_node>

In this example, <element_node name = ″C″> is duplicated, because it is mapped

through two different paths: \A1\B\C and \A2\B\C. Note that <element_node

name=″B″> is not considered to be duplicated, because it is a non-leaf

<element_node>.

Example 2:

This example shows an <attribute node> conflict.

<element_node name = "A1">

 <attribute_node name = "B">

<element_node name = "A2">

 <attribute_node name = "B">

 /element_node>

<

In this example, <attribute_node name = ″B″> is duplicated, because it is mapped

through two different paths: \A1\B and \A2\B.

Example 3:

This example shows a leaf <element_node> and <attribute_node> conflict.

<element_node name = "A">

 <element_node name = "B">

 <text_node>

 </element_node>

</element_node>

<attribute_node name = "B">

<attribute_node name = "A">

In this example, <element_node name = ″B″> conflicts with <attribute_node name

= ″B″>. Note that <element_node name = ″A″> and <attribute_node name = ″A″>

do not conflict, because <element_node name = ″A″> is not a leaf <element_node>.

If conflicts occur, the XML document DTD must be revised to eliminate the

conflicts. The XML document and the DAD file also need to be revised to reflect

the DTD changes.

Example 4:

188 XML Extender Administration and Programming

7 duplicate naming conflicts were found

A total of 16 tags are in error (cumulate occurrences of these tags: 20)

The following tags are duplicates:

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

 4 <element_node name="Country"> line(s): 127 135

 <text_node>

 <RDB_node>

 <table name="advertiser">

 <column type="VARCHAR(63)" name="country">

<DAD>

<Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

 <element_node name="Campaign" multi_occurrence="YES">

 <element_node name="Target" multi_occurrence="YES">

 <element_node name="Location" multi_occurrence="YES">

 7 <element_node name="Country"> line(s): 460

 <text_node>

 <RDB_node>

 <table name="target_location">

 <column type="VARCHAR(63)" name="country">

--

Tags that are in error are grouped by naming conflict. The groups are separated by

lines, and the tags are separated by short lines. You can also display all the error

occurrences by using the all command line option.

If there are no duplicates in the DAD file, the following message is written in the

output text file:

No duplicated tags were found.

Missing type attribute detection

When using a DAD file to enable a collection or for decomposition, the type

attribute must be specified for each <column> tag. For example:

<column name="email" type="varchar(20)">

The enable_collection command uses the column type specifications to create the

tables in the collection if the tables do not exist. If the tables do exist, the type

specified in the DAD must match the actual column type in the database.

Example:

The following example is a fragment of an output text file showing <column> tags

that do not have the type attribute:

If this DAD is to be used for decomposition or for enabling a collection,

the type attributes are missing for the following <column> tag(s):

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

 <element_node name="Address">

 <text_node>

 <RDB_node>

7 <column name="address"> line: 86

Chapter 9. Document access definition (DAD) files 189

If no type attributes are missing, the following message is written in the output

text file:

No type attributes are missing for <column> tags.

Missing table declaration detection

The first <RDB_node> tag in the DAD file must enclose the table declaration,

including all <table> tags which declare the relational tables that are used for data

mapping. This tag must be enclosed in the first <element_node> tag. All

subsequent <RDB_node> tags must be enclosed in a <text_node> tag.

An error is also added to the output file if the first encountered <RDB_node> tag

contains a <column> tag. This error indicates either that the table declaration is

missing, or that the table declaration wrongly contains a <column> tag.

Missing <text_node> or <attribute_node> detection

Each <RDB_node> tag other than the first one, which is used for the table

declaration, must be enclosed in an <attribute_node> or a <text_node> tag.

Examples:

Example 1:

<element_node name ="amount">

<text_node>

<RDB_node>

<table name="fakebank.payments"/>

<column name="amount" type="decimal(8,2)"/>

</RDB_node>

</element_node>

Example 2:

The following example is a fragment of an output text file showing a missing

<text_node> or <attribute_node> tag:

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

 <element_node name="PostalCode">

5 <RDB_node> line: 107

 <table name="advertiser">

 <column type="VARCHAR(10)" name="postal_code">

Check for <attribute_node> and <element_node> mapping order

This check is required for FixPak 3 and earlier. The <attribute_node> tags need to

be mapped to a table before any <element_node> tags are mapped to the table.

Example:

The following example shows tags that need to be mapped to a table.

<element_node name="payment-request"

multi_occurrence="YES">

 <element_node name="payment-request-id">

 <text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="statement_id" type="varchar(30)"/>

 <element_node name="bank-customer-info">

 <element_node name="account">

 <attribute_node name="type">

190 XML Extender Administration and Programming

<text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="payor_account" type="char(6)"/

In this example, <attribute_node name=″type″> is mapped to the same table

(fakebank.payments) as <element_node name = ″payment-request-id″>. The

mapping of the <attribute_node> must precede the mapping of the

<element_node>.

Data mapping consistency check for tags with identical name

attribute values

Within the DAD file, all <element_node> tags and all <attribute_node> tags that

are mapped and, identified by distinct name attribute values should be mapped

only once. If two or more occurrences of an <element_node> tag or

<attribute_node> tag are mapped to different columns, their name attributes

should be assigned different values.

Example:

Example 1: In this example, the second occurrence of the <element_node

name=″type″> tag has a different mapping than the first occurrence. Duplicate

<attribute_node> and duplicate leaf <element_node> tags are not displayed as a

result of this check.

<element_node name="bank-customer-info">

 <element_node name="account">

 <element_node name="type">

 <text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="payor_account" type="char(20)

 </RDB_node>

 </text_node>

 </element_node>

 <element_node>

<element_node>

<element_node name="bank-customer-info">

 <element_node name="account">

 <element_node name="type">

 <text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="payto_account" type="char(20)"/>

 </RDB_node>

 </text_node>

 </element_node>

</element_node>

<element_node>

You can fix this error by creating a new element to use with the second mapping.

You also need to change the DTD, the XML document, and the DAD file.

Example 2: This example is a fragment of an output text file that indicates

<element_node> tags that have the same names and ancestors, but not the same

mappings.

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="PostalCode"> line(s): 127

 <text_node>

Chapter 9. Document access definition (DAD) files 191

<RDB_node>

 <table name="advertiser">

 <column type="VARCHAR(10)" name="postal_code">

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="PostalCode"> line(s): 135 143

 <text_node>

 <RDB_node>

 <table name="advertiser">

 <column type="VARCHAR(10)" name="postal_code2">

In this example, one occurrence of the <element_node name=″PostalCode″> on line

127 is mapped to the ’postal_code’ column, and two other occurrences of the same

tag, on lines 135 and 143, are mapped to the ’postal_code2’ column.

Multi_occurrence attribute value checking for parent

<element_node> with mapped children

This check is relevant only to DAD files that use RDB-node mapping.

The default value for the multi_occurrence attribute is NO. The multi_occurrence

attribute should be assigned the value YES for each <element_node> tag that has

as direct children an <attribute_node> tag or two or more <element_node> tags

meeting one or two of the following criteria:

v The <element_node> is mapped (it has a <text_node> as its direct child).

v The <element_node> has at least one <attribute_node> as a direct child.

Example:

Example 1: In the following example, payment-request-id and amount are mapped

to a DB2 UDB table. Sender has an <attribute_node> as a direct child.

Payment-request-id, amount and sender are all direct children of payment-request:

<element_node name="payment-request" multi_occurrence="YES">

 <element_node name="payment-request-id">

 <text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="statement_id" type="varchar(30)"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name ="amount">

 <text_node>

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="amount" type="decimal(8,2)"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name ="sender">

 <attribute_node name ="ID">

 <RDB_node>

 <table name="fakebank.payments"/>

 <column name="sender_ID" type="decimal(8,2)"/>

 </RDB_node>

 </attribute_node>

 </element_node>

 </element_node>

192 XML Extender Administration and Programming

The DAD checker indicates all <element_node> tags whose multi_occurrence

attributes are set to NO.

Example 2: The following example is a fragment of an output text file suggesting

<element_node> tags whose multi_occurrence attributes should be set to YES.

<DAD>

 <Xcollection>

 <root_node>

 <element_node name="Advertiser" multi_occurrence="YES">

4 <element_node name="Password"> line(s): 49 75

 <element_node name="Pswd1">

 <element_node name="Pswd2">

Attribute and element naming conflict

In XML documents, elements with the same name can appear in different contexts,

such as having different ancestor elements. Attributes and elements can have

identical names.

The DAD checker can be used to check XML documents for naming conflicts. If

more than one of the conflicting elements or attributes needs to be mapped, then

naming changes should be made to the document and the DTD.

It is best to check the XML document before the DAD file is created. The DAD

checker does not validate the XML document against its DTD.

Example:

The following example is a fragment of an XML document where naming conflicts

occur:

<A1>

 <C>

<A2>

 <C>

<D C="attValue">

.....

If the <C> element and the C attribute are to be mapped, then the resulting

DAD file would have the following duplicate conflicts:

<element_node name = "A1">

 <element_node name = "B">

 <element_node name = "C">

 <text_node>

<element_node name = "A2">

 <element_node name = "B">

 <element_node name = "C">

 <text_node>

 <element_node name = "D">

 <attribute_node name = "C">

</element_node>

The two <element_node name = ″C″> tags and the <attribute_node name = ″C″>

tag are duplicates in the DAD.

Chapter 9. Document access definition (DAD) files 193

194 XML Extender Administration and Programming

Chapter 10. XML Extender stored procedures

XML Extender stored procedures

 The XML Extender provides stored procedures for administration and management

of XML columns and collections. These stored procedures can be called from the

DB2 client. The client interface can be embedded in SQL, ODBC, or JDBC. See the

section on stored procedures in the DB2 UDB for OS/390 Administration Guide for

details about how to call stored procedures.

The stored procedures use the schema DB2XML, which is the schema name of the

XML Extender.

The XML Extender provides three types of stored procedures:

Administration stored procedures

assist users in completing administrative tasks

Composition stored procedures

generate XML documents using data in existing database tables

Decomposition stored procedures

break down or shred incoming XML documents and store data in new or

existing database tables

Ensure that you include the XML Extender external header files in the program

that calls stored procedures. The header files are located in the

″$dxx_install$\dxx\samples\db2xml\include″ directory, where $dxx_install$ is the

directory where you installed DB2 XML Extender. The header files are:

dxx.h The XML Extender defined constant and data types

dxxrc.h The XML Extender return code

The syntax for including these header files is:

#include "dxx.h"

#include "dxxrc.h"

Make sure that the path of the include files is specified in your makefile with the

compilation option.

XML Extender administration stored procedures

 These stored procedures are used for administration tasks, such as enabling or

disabling an XML column or collection. They are called by the XML Extender

administration wizard and the administration command dxxadm.

v dxxEnableDB()

v dxxDisableDB()

v dxxEnableColumn()

v dxxDisableColumn()

v dxxEnableCollection()

v dxxDisableCollection()

© Copyright IBM Corp. 1999, 2004 195

dxxEnableDB() stored procedure

 Purpose:

 Enables the database server. When the database server is enabled, the XML

Extender creates the following objects:

v The XML Extender user-defined types (UDTs)

v The XML Extender user-defined functions (UDFs)

v The XML Extender stored procedures

v The XML Extender DTD repository table, DTD_REF, which stores DTDs and

information about each DTD.

v The XML Extender usage table, XML_USAGE, which stores common information

for each column that is enabled for XML and for each collection.

 Syntax:

 dxxEnableDB(long varchar (64) wlmNames /* input */

 varchar (18) extSecurity /* input */

 returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 50. dxxEnableSRV() parameters

Parameter Description IN/OUT parameter

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

wlmNames The names of the WLM

environments.

IN

extSecurity The external security option; values

can be DB2 UDB (default), USER, or

DEFINER

IN

 Related concepts:

v “XML Extender administration stored procedures” on page 195

v Chapter 13, “XML Extender administration support tables,” on page 269

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

dxxDisableDB() stored procedure

 Purpose:

 Disables the database server. When the XML Extender disables the database server,

it drops the following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender DTD repository table, DTD_REF, which stores DTDs and

information about each DTD.

196 XML Extender Administration and Programming

v The XML Extender usage table, XML_USAGE, which stores common information

for each column that is enabled for XML and for each collection.

Important: You must disable all XML columns before attempting to disable a

database server. The XML Extender cannot disable a database server that contains

tables with columns or collections that are enabled for XML.

 Syntax:

 dxxDisableDB(

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 51. dxxDisableDB() parameters

Parameter Description IN/OUT parameter

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

 Related concepts:

v “XML Extender administration stored procedures” on page 195

v Chapter 13, “XML Extender administration support tables,” on page 269

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

dxxEnableColumn() stored procedure

 Purpose:

 Enables an XML column. When enabling a column, the XML Extender completes

the following tasks:

v Determines whether the XML table has a primary key; if not, the XML Extender

alters the XML table and adds a column called DXXROOT_ID.

v Creates side tables that are specified in the DAD file with a column containing a

unique identifier for each row in the XML table. This column is either the

root_id that is specified by the user, or it is the DXXROOT_ID that was named

by the XML Extender.

v Creates a default view for the XML table and its side tables, optionally using a

name you specify.

 Syntax:

 DB2XML.dxxEnableColumn(char(tbName) tbName, /* input */

 char(colName) colName, /* input */

 CLOB(100K) DAD, /* input */

 char(tablespace) tablespace, /* input */

 char(defaultView) defaultView, /* input */

Chapter 10. XML Extender stored procedures 197

char(rootID) rootID, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 52. dxxEnableColumn() parameters

Parameter Description IN/OUT parameter

tbName The name of the table containing

the XML column.

IN

colName The name of the XML column. IN

DAD A CLOB containing the DAD file. IN

tablespace The table space that contains the

side tables other than the default

table space. If not specified, the

default table space is used.

IN

defaultView The name of the default view

joining the application table and

side tables.

IN

rootID The name of the single primary key

in the application table that is to be

used as the root ID for the side

table.

IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

 Related concepts:

v “XML columns as a storage and access method” on page 73

v “XML Extender administration stored procedures” on page 195

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxDisableColumn() stored procedure

 Purpose:

 Disables the XML-enabled column. When an XML column is disabled, it can no

longer contain XML data types.

 Syntax:

 DB2XML.dxxDisableColumn(char(tbName) tbName, /* input */

 char(colName) colName, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

198 XML Extender Administration and Programming

Parameters:

 Table 53. dxxDisableColumn() parameters

Parameter Description IN/OUT parameter

tbName The name of the table containing

the XML column.

IN

colName The name of the XML column. IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

dxxEnableCollection() stored procedure

 Purpose:

 Enables an XML collection that is associated with an application table.

 Syntax:

 dxxEnableCollection(char() dbName, /* input */

 char(colName) colName, /* input */

 CLOB(100K) DAD, /* input */

 char(tablespace) tablespace, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 54. dxxEnableCollection() parameters

Parameter Description IN/OUT parameter

dbName The database name. IN

colName The name of the XML collection. IN

DAD A CLOB containing the DAD file. IN

tablespace The table space that contains the

side tables other than the default

table space. If not specified, the

default table space is used.

IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned

in case of error.

OUT

 Related concepts:

v “XML collections as a storage and access method” on page 91

v “XML Extender administration stored procedures” on page 195

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

Chapter 10. XML Extender stored procedures 199

Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxDisableCollection() stored procedure

 Purpose:

 Disables an XML-enabled collection, removing markers that identify tables and

columns as part of a collection.

 Syntax:

 dxxDisableCollection(char(dbName) dbName, /* input */

 char(colName) colName, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 55. dxxDisableCollection() parameters

Parameter Description IN/OUT parameter

dbName The database name. IN

colName The name of the XML collection. IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

XML Extender composition stored procedures

 The composition stored procedures dxxGenXML(), dxxRetrieveXML(),

dxxGenXMLCLOB(), and dxxRetrieveXMLCLOB() are used to generate XML

documents using data in existing database tables. The dxxGenXML() stored

procedure takes a DAD file as input; it does not require an enabled XML

collection. The dxxRetrieveXML() stored procedure takes an enabled XML

collection name as input.

The following performance enhancements have been made for composition stored

procedures.

v On iSeries and zSeries operating systems, the length of the override parameter

has been increased to 16KB.

v The requirement for an intermediate result table has been removed.

v By using these stored procedures:

– You reduce the instruction path length because there is no need to create

result tables.

– You simplify your programming.
v Use the stored procedures that require an intermediate result table if you want

to produce more than one document.

200 XML Extender Administration and Programming

v The user-defined functions for XML column have been enhanced for

performance

v The DB2 UDB XML Extender user-defined functions will now keep small

(512KB) XML documents in memory while processing them. This reduces

input/output activity and the contention for the disk that is used for temporary

files.

v The definition of the DB2 UDB XML Extender scalar (non-table) user-defined

functions has been changed so that they can run in parallel. This change

provides significant performance improvements in the execution of queries that

refer to the user-defined functions more than once. You must run the migration

script program to get the parallel capability for the scalar UDFs. If you already

have columns enabled using the scalar UDFs, you must disable all your

columns, run the migration script and then re-enable the columns.

Calling XML Extender composition stored procedures

 You can use XML Extender in different operating systems from a single client

application, by writing the stored procedure names in both uppercase and

lowercase. To call the stored procedures in this way, use the result_colname

and valid_colname versions of the composition stored procedures. Using this

method gives you the following benefits:

v You can use these stored procedures in all DB2 Universal Database

environments because you can include many columns in the result table. The

versions of the stored procedures that do not support result_colname and

valid_colname require exactly one column in the result table.

v You can use a declared temporary table as your result table. Your temporary

table is identified by a schema that is set to ″session″. Declared temporary tables

enable you to support multi-user client environments.

Use uppercase when you call the DB2 XML Extender stored procedures to access

the stored procedures consistently across platforms.

 Prerequisites:

 Run the DXXGPREP JCL job before working with stored procedures to initialize

XML Extender.

 Procedure:

 Call XML Extender using the following syntax:

CALL DB2XML.function_entry_point

Where:

function_entry_point

Specifies the name of the function.

In the CALL statement, the arguments that are passed to the stored procedure

must be host variables, not constants or expressions. The host variables can have

null indicators.

See samples for calling stored procedures in the dxx_install/samples/db2xml/c

and dxx_install/samples/db2xml/cli directories. In the

dxx_install/samples/db2xml/c directory, SQX code files are provided to call XML

collection stored procedures using embedded SQL. In the

Chapter 10. XML Extender stored procedures 201

dxx_install/samples/db2xml/cli directory, the sample files show how to call

stored procedures using the Call Level Interface (CLI).

Stored Procedures that return CLOBS

If you have CLOB files that are larger than 1 MB, XML Extender provides a

command file to redefine the stored procedure parameter. Download the

crtgexc.zip from the DB2 XML Extender Web site. This ZIP file contains the

following programs:

crtgenxc.zox.jci and crtgenxc.zos.cmd

For use with XML Extender for OS/390 V7, APAR PQ58249 and later.

To specify the CLOB length: Open the file in an editor and modify the resultDoc

parameter shown in the following example:

out resultDoc clob(clob_size),

If more than one document is generated, the stored procedure returns the first

document.

Size recommendation: The size limit of the resultDoc parameter depends on your

system setup. Be aware that the amount specified in this parameter is the amount

allocated by JDBC, regardless of the size of the document. The size should

accommodate your largest XML files, but should not exceed 1.5 gigabytes.

To run the command file, modify the JCL or CMD file contents. Submit the JCL or

run the CMD from the USS.

dxxGenXML() stored procedure

 Purpose:

 Constructs XML documents using data that is stored in the XML collection tables

that are specified by the <Xcollection> in the DAD file and inserts each XML

document as a row into the result table. You can also open a cursor on the result

table and fetch the result set.

To provide flexibility, dxxGenXML() also lets the user specify the maximum

number of rows to be generated in the result table. This decreases the amount of

time the application must wait for the results during any trial process. The stored

procedure returns the number of actual rows in the table and any error

information, including error codes and error messages.

To support dynamic query, dxxGenXML() takes an input parameter, override. Based

on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

 Syntax:

 dxxGenXML(CLOB(100K) DAD, /* input */

 char(resultTabName32) resultTabName, /* input */

 char resultColName, char resultValidCol /* input */

 char(30) valid_column, /* input */

 integer overrideType /* input */

202 XML Extender Administration and Programming

varchar(1024) override, /* input */

 integer maxRows, /* input */

 integer numRows, /* output */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Where the varchar_value is 32672 for Windows and UNIX, and 16366 for iSeries

and z/OS.

 Parameters:

 Table 56. dxxGenXML() parameters

Parameter Description IN/OUT

parameter

DAD A CLOB containing the DAD file. IN

resultTabName The name of the result table, which should

exist before the call. The table contains

only one column of either XMLVARCHAR

or XMLCLOB type.

IN

result_column The name of the column in the result table

in which the composed XML documents

are stored.

IN

valid_column The name of the column that indicates

whether the XML document is valid when

it is validated against a document type

definition (DTD).

IN

overrideType A flag to indicate the type of the following

override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks separated by

″AND″. Using this overrideType requires

that RDB_node mapping is used in the

DAD file.

IN

resultDoc A CLOB that contains the composed XML

document.

OUT

valid valid is set as follows:

v If VALIDATION=YES then valid=1 for

successful validation or valid=0 for

unsuccessful validation.

v If VALIDATION=NO then valid=NULL.

OUT

Chapter 10. XML Extender stored procedures 203

Table 56. dxxGenXML() parameters (continued)

Parameter Description IN/OUT

parameter

maxRows The maximum number of rows in the

result table.

IN

numRows The actual number generated rows in the

result table.

OUT

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in case

of error.

OUT

 Examples:

 The following example fragment assumes that a result table is created with the

name of XML_ORDER_TAB, and that the table has one column of XMLVARCHAR

type. A complete, working sample is located in DXXSAMPLES/QCSRC(GENX).

#include "dxx.h"

#include "dxxrc.h"

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE is CLOB(100K) dad; /* DAD */

 SQL TYPE is CLOB_FILE dadFile; /* dad file */

 char result_tab[32]; /* name of the result table */

 char verride[2]; /* override, will set to NULL*/

 short overrideType; /* defined in dxx.h */

 short max_row; /* maximum number of rows */

 short num_row; /* actual number of rows */

 long returnCode; /* return error code */

 char returnMsg[1024]; /* error message text */

 short dad_ind;

 short rtab_ind;

 short ovtype_ind;

 short ov_inde;

 short maxrow_ind;

 short numrow_ind;

 short returnCode_ind;

 short returnMsg_ind;

 EXEC SQL END DECLARE SECTION;

 /* create table */

 EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

 /* read data from a file to a CLOB */

 strcpy(dadfile.name,"dxxinstall/dad/litem3.dad");

 dadfile.name_length = strlen("dxxinstall/dad/litem3.dad");

 dadfile.file_options = SQL_FILE_READ;

 EXEC SQL VALUES (:dadfile) INTO :dad;

 strcpy(result_tab,"xml_order_tab");

 override[0] = ’\0’;

 overrideType = NO_OVERRIDE;

 max_row = 500;

 num_row = 0;

 returnCode = 0;

 msg_txt[0] = ’\0’;

 collection_ind = 0;

 dad_ind = 0;

 rtab_ind = 0;

 ov_ind = -1;

204 XML Extender Administration and Programming

ovtype_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 returnCode_ind = -1;

 returnMsg_ind = -1;

 /* Call the stored procedure */

 EXEC SQL CALL dxxGenXML(:dad:dad_ind;

 :result_tab:rtab_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE is CLOB(100K) dad; /* DAD */

EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD when running from USS */

 /* to ensure that DB2 UDB converts */

 /* the code page correctly */

char result_tab[32]; /* name of the result table */

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL */

char override[2]; /* override, will set to NULL*/

short overrideType; /* defined in dxx.h */

short max_row; /* maximum number of rows */

short num_row; /* actual number of rows */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short dad_ind;

short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;

short numrow_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* create table */

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize the DAD CLOB object. */

file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");

if (file_handle != NULL) { file_length = fread ((void *) &dad.data

, 1, FILE_SIZE, file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file

 /dxx/samples/dad/getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n",);

 rc = -1;

 goto exit;

}

/* initialize host variable and indicators */

Chapter 10. XML Extender stored procedures 205

strcpy(result_tab,"xml_order_tab");

strcpy(result_colname, "xmlorder")

valid_colname = ’\0’;

override[0] = ’\0’;

overrideType = NO_OVERRIDE;

max_row = 500;

num_row = 0;

returnCode = 0;

msg_txt[0] = ’\0’;

dad_ind = 0;

rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = -1;

ovtype_ind = 0;

maxrow_ind = 0;

numrow_ind = -1;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXGENXML" (:dad:dad_ind;

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

 Related concepts:

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Composing XML documents by using SQL mapping” on page 60

v “Composing XML collections by using RDB_node mapping” on page 63

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

dxxRetrieveXML() stored procedure

 Purpose:

 The stored procedure dxxRetrieveXML() serves as a means for retrieving

decomposed XML documents. As input, dxxRetrieveXML() takes a buffer

containing the DAD file, the name of the created result table, and the maximum

number of rows to be returned. It returns a result set of the result table, the actual

number of rows in the result set, an error code, and message text.

206 XML Extender Administration and Programming

To support dynamic query, dxxRetrieveXML() takes an input parameter, override.

Based on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

The requirements of the DAD file for dxxRetrieveXML() are the same as the

requirements for dxxGenXML(). The only difference is that the DAD is not an

input parameter for dxxRetrieveXML(), but it is the name of an enabled XML

collection.

 Syntax:

 dxxRetrieveXML(char(collectionName32) collectionName, /* input */

 char(resultTabName32) resultTabName, /* input */

 char resultColName, char resultValidCol /* input */

 integer overrideType, /* input */

 varchar_value override, /* input */

 integer maxRows, /* input */

 integer numRows, /* output */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

Where varchar_value is 32672 for Windows and UNIX and 16366 for iSeries and

z/OS.

 Parameters:

 Table 57. dxxRetrieveXML() parameters

Parameter Description IN/OUT

parameter

collectionName The name of an enabled XML collection. IN

resultTabName The name of the result table, which

should exist before the call. The table

contains only one column of either

XMLVARCHAR or XMLCLOB type.

IN

result_column The name of the column in the result

table in which the composed XML

documents are stored.

IN

valid_column The name of the column that indicates

whether the XML document is valid

when it is validated against a document

type definition (DTD).

IN

overrideType A flag to indicate the type of the

following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

Chapter 10. XML Extender stored procedures 207

Table 57. dxxRetrieveXML() parameters (continued)

Parameter Description IN/OUT

parameter

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD

file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks, separated by

″AND″. Using this overrideType requires

that RDB_node mapping is used in the

DAD file.

IN

maxRows The maximum number of rows in the

result table.

IN

numRows The actual number of generated rows in

the result table.

OUT

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in case

of error.

OUT

 Examples:

 The following fragment is an example of a call to dxxRetrieveXML(). In this

example, a result table is created with the name of XML_ORDER_TAB, and it has

one column of XMLVARCHAR type. A complete, working sample is located in

dxx_install\samples\db2xml\qcsrc(rtrx).

#include "dxx.h"

#include "dxxrc.h"

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char collection[32]; /* dad buffer */

 char result_tab[32]; /* name of the result table */

 char override[2]; /* override, will set to NULL*/

 short overrideType; /* defined in dxx.h */

 short max_row; /* maximum number of rows */

 short num_row; /* actual number of rows */

 long returnCode; /* return error code */

 char returnMsg[1024]; /* error message text */

 short dadbuf_ind;

 short rtab_ind;

 short ovtype_ind;

 short ov_inde;

 short maxrow_ind;

 short numrow_ind;

 short returnCode_ind;

 short returnMsg_ind;

 EXEC SQL END DECLARE SECTION;

 /* create table */

208 XML Extender Administration and Programming

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

 /* initialize host variable and indicators */

 strcpy(collection,"sales_ord");

 strcpy(result_tab,"xml_order_tab");

 override[0] = ’\0’;

 overrideType = NO_OVERRIDE;

 max_row = 500;

 num_row = 0;

 returnCode = 0;

 msg_txt[0] = ’\0’;

 collection_ind = 0;

 rtab_ind = 0;

 ov_ind = -1;

 ovtype_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 returnCode_ind = -1;

 returnMsg_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxRetrieve(:collection:collection_ind;

 :result_tab:rtab_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

char result_tab[32]; /* name of the result table */

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL*/

char override[2]; /* override, will set to NULL*/

short overrideType; /* defined in dxx.h */

short max_row; /* maximum number of rows */

short num_row; /* actual number of rows */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short collectionName_ind;

short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;

short numrow_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

/* create table */

EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */

strcpy(collection, "sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0] = ’\0’;

override[0] = ’\0’;

overrideType = NO_OVERRIDE;

max_row = 500;

num_row = 0;

returnCode = 0;

msg_txt[0] = ’\0’;

Chapter 10. XML Extender stored procedures 209

collectionName_ind = 0;

rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = -1;

ovtype_ind = 0;

maxrow_ind = 0;

numrow_ind = -1;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXRETRIEVE"

 (:collectionName:collectionName_ind,

 :result_tab:rtab_ind,

 :result_colname:rcol_ind,

 :valid_colname:vcol_ind,

 :overrideType:ovtype_ind,:override:ov_ind,

 :max_row:maxrow_ind,:num_row:numrow_ind,

 :returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

 Related concepts:

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Composing XML documents by using SQL mapping” on page 60

v “Composing XML collections by using RDB_node mapping” on page 63

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxGenXMLClob stored procedure

 Purpose:

 As input, dxxGenXMLClob takes a buffer containing the DAD. It constructs XML

documents using data that is stored in the XML collection tables that are specified

by the <Xcollection> in the DAD and returns the first and typically the only XML

document generated into the resultDoc CLOB.

 Syntax:

 dxxGenXMLClob(CLOB(100k) DAD /*input*/

 integer overrideType, /*input*/

 varchar(varchar_value) override, /*input*/

 CLOB(1M) resultDoc, /*output*/

 integer valid, /*output*/

 integer numDocs, /*output*/

 long returnCode, /*output*/

 varchar(1024) returnMsg), /*output*/

210 XML Extender Administration and Programming

Where varchar_value is 32672 for Windows and UNIX and 16366 for iSeries and

z/OS.

 Parameters:

 Table 58. dxxGenXMLClob parameters

Parameter Description IN/OUT

parameter

DAD A CLOB containing the DAD file. IN

overrideType A flag to indicate the type of override parameter:

NO_OVERRIDE

No override.

SQL_OVERRIDE

Override by an SQL_stmt

XML_OVERRIDE

Override by an XPath-based condition.

IN

override Overrides the condition in the DAD file. The

input value is based on the overrideType.

NO_OVERRIDE

A NULL string.

SQL_OVERRIDE

A valid SQL statement. Using this

overrideType requires that SQL mapping

be used in the DAD file. The input SQL

statement overrides the SQL_stmt in the

DAD file.

XML_OVERRIDE

A string that contains one or more

expressions in double quotation marks

separated by the word and. Using this

overrideType requires that RDB_node

mapping be used in the DAD file

IN

resultDoc A CLOB that contains the composed XML

document.

OUT

valid valid is set as follows:

v If VALIDATION=YES then valid=1 for

successful validation or valid=0 for

unsuccessful validation.

v If VALIDATION=NO then valid=NULL.

OUT

numDocs The number of XML documents that would be

generated from the input data.

Note: Currently only the first document is

returned.

OUT

returnCode The return code from the stored procedure. OUT

returnMsg The message text that is returned in case of error. OUT

 The CLOB parameter size is 1 MB. If you have CLOB files that are larger than 1

MB, XML Extender provides a command file to redefine the stored procedure

parameter. Download the crtgenxc.zip file from the DB2 UDB XML Extender Web

site. This ZIP file contains the following programs:

crtgenxc.db2

For use on XML Extender V7.2 FixPak 5 and later for UNIX and Windows.

Chapter 10. XML Extender stored procedures 211

crtgenxc.iseries

For use with XML Extender for iSeries

crtgenxc.zox.jci and crtgenxc.zos.cmd

For use with XML Extender for OS/390 V7, APAR PQ58249 and later.

To specify the CLOB length: Open the file in an editor and modify the resultDoc

parameter, shown in the following example.

out resultDoc clob(clob_size),

Size recommendation: The size limit of the resultDoc parameter depends on your

system setup, but be aware that the amount specified in this parameter is the

amount allocated by JDBC, regardless of the size of the document. The size should

accommodate your largest XML files, but should not exceed 1.5 gigabytes.

 Related concepts:

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Composing XML documents by using SQL mapping” on page 60

v “Composing XML collections by using RDB_node mapping” on page 63

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxRetrieveXMLClob stored procedure

 Purpose:

 The dxxRetrieveXMLClob stored procedure enables document composition from

relational data.

The requirements for using dxxRetrieveXMLClob are the same as the requirements

for dxxGenXMLClob. The only difference is that the DAD is not an input

parameter for dxxRetrieveXMLClob, but it is the name of an enabled XML

collection.

 Syntax:

 dxxRetrieveXMLClob(varchar(collectionName) collelctionName /*input*/

 integer overrideType, /*input*/

 varchar(varchar_value) override, /*input*/

 CLOB(1M) resultDoc, /*output*/

 integer valid, /*output*/

 integer numDocs, /*output*/

 long returnCode, /*output*/

 varchar(1024) returnMsg), /*output*/

 Parameters:

 Table 59. dxxRetrieveXMLClob parameters

Parameter Description IN/OUT

parameter

collectionName The name of an enabled XML collection. IN

212 XML Extender Administration and Programming

Table 59. dxxRetrieveXMLClob parameters (continued)

Parameter Description IN/OUT

parameter

overrideType A flag to indicate the type of override

parameter:

NO_OVERRIDE

No override.

SQL_OVERRIDE

Override by an SQL_stmt

XML_OVERRIDE

Override by an XPath-based

condition.

IN

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

NO_OVERRIDE

A NULL string.

SQL_OVERRIDE

A valid SQL statement. Using

this overrideType requires that

SQL mapping be used in the

DAD file. The input SQL

statement overrides the

SQL_stmt in the DAD file.

XML_OVERRIDE

A string that contains one or

more expressions in double

quotation marks separated by

the word and. Using this

overrideType requires that

RDB_node mapping be used in

the DAD file

IN

resultDoc The maximum number of rows in the

result table.

IN

valid valid is set as follows:

v If VALIDATION=YES then valid=1 for

successful validation or valid=0 for

unsuccessful validation.

v If VALIDATION=NO then

valid=NULL.

OUT

numDocs The number of XML documents that

would be generated from the input data.

NOTE: currently only the first document

is returned.

OUT

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in case

of error.

OUT

 The CLOB parameter size is 1 MB. If you have CLOB files that are larger than 1

MB, XML Extender provides a command file to redefine the stored procedure

parameter. Download the crtgenxc.zip file from the DB2 UDB XML Extender Web

site. This ZIP file contains the following programs:

Chapter 10. XML Extender stored procedures 213

crtgenxc.db2

For use on XML Extender V7.2 Fixpak 5 and later for UNIX and Windows.

crtgenxc.iseries

For use with XML Extender for iSeries

crtgenxc.zox.jci and crtgenxc.zos.cmd

For use with XML Extender for OS/390 V7, APAR PQ58249 and later.

To specify the CLOB length: Open the file in an editor and modify the resultDoc

parameter, shown in the following example.

out resultDoc clob(clob_size),

Size recommendation: The size limit of the resultDoc parameter depends on your

system setup, but be aware that the amount specified in this parameter is the

amount allocated by JDBC, regardless of the size of the document. The size should

accommodate your largest XML files, but should not exceed 1.5 gigabytes.

 Related concepts:

v “XML Extender composition stored procedures” on page 200

 Related tasks:

v “Composing XML documents by using SQL mapping” on page 60

v “Composing XML collections by using RDB_node mapping” on page 63

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

XML Extenders decomposition stored procedures

 The decomposition stored procedures dxxInsertXML() and dxxShredXML() are

used to break down or shred incoming XML documents and to store data in new

or existing database tables. The dxxInsertXML() stored procedure takes an enabled

XML collection name as input. The dxxShredXML() stored procedure takes a DAD

file as input; it does not require an enabled XML collection.

dxxShredXML() stored procedure

 Purpose:

 Decomposes XML documents, based on a DAD file mapping, storing the content of

the XML elements and attributes in specified DB2 UDB tables. In order for

dxxShredXML() to work, all tables specified in the DAD file must exist, and all

columns and their data types that are specified in the DAD must be consistent

with the existing tables. The stored procedure requires that the columns specified

in the join condition, in the DAD, correspond to primary- foreign key relationships

in the existing tables. The join condition columns that are specified in the

RDB_node of the root element_node must exist in the tables.

The stored procedure fragment in this section is a sample for explanation purposes.

 Syntax:

214 XML Extender Administration and Programming

dxxShredXML(CLOB(100K) DAD, /* input */

 CLOB(1M) xmlobj, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 60. dxxShredXML() parameters

Parameter Description IN/OUT

parameter

DAD A CLOB containing the DAD file. IN

xmlobj An XML document object in XMLCLOB

type.

IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in case

of error.

OUT

 Examples:

 The following fragment is an example of a call to dxxShredXML().

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE is CLOB dad; /* DAD*/

 SQL TYPE is CLOB_FILE dadFile; /* DAD file*/

 SQL TYPE is CLOB xmlDoc; /* input XML document */

 SQL TYPE is CLOB_FILE xmlFile; /* input XMLfile */

 long returnCode; /* error code */

 char returnMsg[1024]; /* error message text */

 short dad_ind;

 short xmlDoc_ind;

 short returnCode_ind;

 short returnMsg_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(dadFile.name,"dxx_install

 /samples/db2xml/dad/getstart_xcollection.dad

 ");

 dadFile.name_length=strlen("dxx_install

 /samples/db2xml/dad/getstart_xcollection.dad

 ");

 dadFile.file_option=SQL_FILE_READ;

 strcpy(xmlFile.name,"dxx_install

 /samples/db2xml/xml/getstart.xml");

 xmlFile.name_length=strlen("dxx_install

 /samples/db2xml/xml/getstart.xml")");

 xmlFile.file_option=SQL_FILE_READ;

 SQL EXEC VALUES (:dadFile) INTO :dad;

 SQL EXEC VALUES (:xmlFile) INTO :xmlDoc;

 returnCode = 0;

 returnMsg[0] = ’\0’;

 dad_ind = 0;

 xmlDoc_ind = 0;

 returnCode_ind = -1;

 returnMsg_ind = -1;

 /* Call the store procedure */

Chapter 10. XML Extender stored procedures 215

EXEC SQL CALL DB2XML.dxxShredXML(:dad:dad_ind;

 :xmlDoc:xmlDoc_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE is CLOB(100K) dad; /* DAD */

EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD when */

 /* running from USS */

 /* to ensure that DB2 UDB */

 /* converts the code page correctly */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */

EXEC SQL DECLARE :xmlDoc VARIABLE CCSID 1047;

 /* specifies the CCSID for DAD */

 /* when running from USS to ensure */

 /* that DB2 UDB converts the */

 /* code page correctly */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short dad_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* initialize the DAD CLOB object. */

file_handle = fopen("/dxxsamples/dad/getstart_xcollection.dad", "r");

if (file_handle != NULL) {

 file_length = fread ((void *) &dad.data

, 1, FILE_SIZE, file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n");

 rc = -1;

 goto exit;

}

/* Initialize the XML CLOB object. */

 file_handle = fopen("/dxxsamples/xml/getstart_xcollection.xml", "r");

 if (file_handle != NULL) {

 file_length = fread ((void *) &xmlDoc.data

, 1, FILE_SIZE,

 file_handle);

 if (file_length == 0) {

 printf ("Error reading xml file getstart_xcollection.xml \n");

 rc = -1;

 goto exit;

 } else

 xmlDoc.length = file_length;

 }

 else {

 printf("Error opening xml file \n");

 rc = -1;

 goto exit;

216 XML Extender Administration and Programming

}

/* initialize host variable and indicators */

returnCode = 0;

msg_txt[0] = ’\0’;

dad_ind = 0;

xmlDoc_ind = 0;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXSHRED" (:dad:dad_ind;

 :xmlDoc:xmlDoc_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

 Related concepts:

v “XML Extenders decomposition stored procedures” on page 214

 Related tasks:

v “Decomposing an XML collection by using RDB_node mapping” on page 65

v “Decomposing XML documents into DB2 UDB data” on page 96

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxInsertXML() stored procedure

 Purpose:

 Takes two input parameters, the name of an enabled XML collection and the XML

document that are to be decomposed, and returns two output parameters, a return

code and a return message.

 Syntax:

 dxxInsertXML(char(32) collectionName, /*input*/

 CLOB(1M) xmlobj, /* input */

 long returnCode, /* output */

 varchar(1024) returnMsg) /* output */

 Parameters:

 Table 61. dxxInsertXML() parameters

Parameter Description IN/OUT parameter

collectionName The name of an enabled XML

collection.

IN

Chapter 10. XML Extender stored procedures 217

Table 61. dxxInsertXML() parameters (continued)

Parameter Description IN/OUT parameter

xmlobj An XML document object in CLOB

type.

IN

returnCode The return code from the stored

procedure.

OUT

returnMsg The message text that is returned in

case of error.

OUT

 Examples:

 In the following fragment example, the dxxInsertXML() call decomposes the input

XML document dxx_install/xml/order1.xml and inserts data into the

SALES_ORDER collection tables according to the mapping that is specified in the

DAD file with which it was enabled with. .

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collection[64]; /* name of an XML collection */

SQL TYPE is CLOB_FILE xmlDoc; /* input XML document */

long returnCode; /* error code */

char returnMsg[1024]; /* error message text */

short collection_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

/* initialize host variable and indicators */

strcpy(collection,"sales_ord")

strcpy(xmlobj.name,"dxx_install/samples

db2xml/xml/getstart.xml");

xmlobj.name_length=strlen("dxx_install/samples

db2xml/xml/getstart.xml");

xmlobj.file_option=SQL_FILE_READ;

returnCode = 0;

returnMsg[0] = ’\0’;

collection_ind = 0;

xmlobj_ind = 0;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL DB2XML.dxxInsertXML(:collection:collection_ind;

:xmlobj:xmlobj_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */

long returnCode; /* return error code */

char returnMsg[1024]; /* error message text */

short collectionName_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

218 XML Extender Administration and Programming

EXEC SQL END DECLARE SECTION;

FILE *file_handle;

long file_length=0;

/* initialize the DAD CLOB object. */

file_handle = fopen("/dxxsamples/dad/getstart_xcollection.dad", "r");

if (file_handle != NULL) {

 file_length = fread ((void *) , &dad.data;

1, FILE_SIZE, file_handle);

 if (file_length == 0) {

 printf ("Error reading dad file getstart_xcollection.dad\n");

 rc = -1;

 goto exit;

 } else

 dad.length = file_length;

}

else {

 printf("Error opening dad file \n");

 rc = -1;

 goto exit;

}

/* initialize host variable and indicators */

strcpy(collectionName, "sales_ord");

returnCode = 0;

msg_txt[0] = ’\0’;

collectionName_ind = 0;

xmlDoc_ind = 0;

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXINSERTXML" (:collection_name:collection_name_ind,

 :xmlDoc:xmlDoc_ind,

 :returnCode:returnCode_ind,

 :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

 EXEC SQL ROLLBACK;

 else

 EXEC SQL COMMIT;

}

exit:

 return rc;

 Related concepts:

v “XML Extenders decomposition stored procedures” on page 214

 Related tasks:

v “Decomposing an XML collection by using RDB_node mapping” on page 65

v “Decomposing XML documents into DB2 UDB data” on page 96

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

Chapter 10. XML Extender stored procedures 219

220 XML Extender Administration and Programming

Chapter 11. MQSeries stored procedures and functions

XML Extender stored procedures and functions for MQSeries

XML Extender provides two methods of storing and accessing XML data. Using

the XML column method, you can store XML documents in a DB2® table while

querying, updating, and retrieving the documents contents. The MQ XML

user-defined functions enable you to query XML documents and then publish the

results to a message queue. Additionally, you can use the XML collection method

to store the untagged contents of an XML document in one or multiple tables or

compose XML documents from multiple tables. Using the MQ XML stored

procedures, you can retrieve an XML document from a message queue, decompose

it into untagged data, and store the data in DB2 UDB tables.You can also compose

an XML document from DB2 data and send the document to an MQSeries®

message queue.

MQSeries supports three messaging models to distribute XML data and

documents:

datagrams

Messages are sent to a single destination with no reply expected.

publish/subscribe

One or more publishers send a message to a publication service which

distributes the message to interested subscribers.

request/reply

Messages are sent to a single destination and the sender expects to receive

a response.

MQSeries can be used in numerous ways. Simple datagrams are exchanged to

coordinate multiple applications, to exchange information, request services, and to

provide notification of interesting events. Publish/subscribe is most often used to

disseminate real-time information in a timely manner. The request/reply style is

generally used as a simple form of pseudo-synchronous remote procedure call.

More complex models can also be constructed by combining these basic styles.

The fundamental messaging techniques described here are used in a wide variety

of ways. Because MQSeries is available across a very wide range of operating

systems it provides an important mechanism to link disparate applications from

similar or dissimilar environments.

To use MQXML functions and stored procedures, ensure that you have the

following software installed.

v DB2 Universal Database™ Version 7.2 or later

v DB2 MQSeries Functions Version 7.2 (Available as an optional installation feature

of DB2 Universal Database Version 7.2. Installation information is available in

the DB2 Universal Database Version 7.2 Release Notes.)

v MQSeries Publish/Subscribe or MQSeries Integrator when using publishing

functions.

© Copyright IBM Corp. 1999, 2004 221

MQPublishXML function

 Purpose:

 The MQPublishXML function publishes XMLVARCHAR and XMLCLOB data to

MQSeries. This function requires the installation of either MQSeries

Publish/Subscribe or MQSeries Integrator. See the following Web site for more

information:

http://www.software.ibm.com/MQSeries

The MQPublishXML function publishes the XML data contained in msg-data to the

MQSeries publisher specified by publisher-service using the quality of publish policy

publish-policy. The topic of the message is optionally specified by topic. An optional

user defined message correlation identifier can be specified by correl-id. The

function returns a 1 if successful.

 Syntax:

�� MQPublishXML (msg-data ,)

publisher-service

topic

publisher-service

,

publish-policy

 ��

 Parameters:

 Table 62. MQPublishXML parameters

Parameter Data type Description

publisher-service VARCHAR(48) A string containing the

logical MQSeries destination

to which the message is to be

sent. When specified, the

publisher-service refers to a

publisher Service Point

defined in the AMT.XML

repository file. If the

publisher-service is not

specified, then the

DB2.DEFAULT.PUBLISHER

will be used. The maximum

size of publisher-service is 48

bytes.

222 XML Extender Administration and Programming

Table 62. MQPublishXML parameters (continued)

Parameter Data type Description

publish-policy VARCHAR(48) A string containing the

MQSeries AMI publish policy

to be used in handling this

message. If specified, the

publish-policy refers to a

policy which is defined in the

AMT.XML repository file.

The publish policy also

defines a set of quality of

publish options that should

be applied to the messaging

operation options. These

options include message

priority and message

persistence the service-policy is

not specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of service-policy is 48 bytes.

For more information, see the

MQSeries Application

Messaging Interface.

msg-data XMLVARCHAR or

XMLCLOB

An XMLVARCHAR or

XMLCLOB expression

containing the data to be sent

via MQSeries.

topic VARCHAR(40) A string containing the topic

that the message is to be

published under. If no topic

is specified, none will be

associated with the message.

The maximum size of topic is

40 bytes. Multiple topics can

be listed within a topic string

by separating each topic by

″:″.

 Return Codes:

 If successful, the MQPublishXML functions return a 1. A value of 0 is returned if

the function is unsuccessful.

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

MQReadXML function

 Purpose:

 The MQREADXML function returns XMLVARCHAR data from the MQSeries

location that is specified by the receive-service. It uses the quality of receive-policy.

The MQREADXML function does not remove messages from the queue associated

with receive-service

Chapter 11. MQSeries stored procedures and functions 223

Syntax:

�� MQREADXML ()

receive-service

receive-service

,

receive-policy

 ��

 Parameters:

 Table 63. MQReadXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be received. If the

receive-service is specified, it

refers to a service point

defined in the AMT.XML

repository file. If

receive-service is not specified,

then the

DB2.DEFAULT.SERVICE is

used. The maximum size of

receive-service is 48 bytes

receive-policy VARCHAR(48) A string containing the

MQSeries AMI service policy

used in the handling of a

message. When the

receive-policy is specified, it

refers to a policy defined in

the AMT.XML repository file.

A receive policy defines a set

of quality of receive options

that are applied to the

messaging operation. These

options include message

priority and message

persistence. If the

receive-policy is not specified,

then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of receive-policy is 48 bytes.

 Results:

 When a message in the queue has been read successfully, MQREADXML returns a

db2xml.xmlvarchar. A NULL is returned if no messages are available.

 Examples:

 Example 1: This example reads the message at the head of the queue that is

specified by the default service DB2.DEFAULT.SERVICE. It uses the default policy

DB2.DEFAULT.POLICY to read the message.

values DB2XML.MQREADXML()

This example returns the contents of the message as an XMLVARCHAR. If no

messages are available a NULL is returned.

Example 2: This example reads the message at the head of the queue specified by

the service MYSERVICE using the default policy DB2.DEFAULT.POLICY.

 values DB2XML.MQREADXML(’MYSERVICE’)

224 XML Extender Administration and Programming

In the example, the contents of the message are returned as XMLVARCHAR. If no

messages are available the a NULL is returned.

Example 3: This example reads the message at the head of the queue specified by

the service MYSERVICE using the policy MYPOLICY.

values DB2XML.MQREADXML(’MYSERVICE’,’MYPOLICY’)

The contents of the message are returned as XMLVARCHAR if successful. If no

messages are available a NULL is returned.

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

MQReadAllXML function

 Purpose:

 The MQReadAllXML function returns a table containing the messages and message

metadata from the MQSeries location specified by receive-service using the quality

of service-policy. Performing this operation does not remove the messages from the

queue associated with receive-service. If num-rows is specified, then a maximum of

num-rows messages will be returned. If num-rows is not specified then all the

available messages are returned.

 Syntax:

�� MQREADALLXML ()

receive-service

num-rows

receive-service

,

service-policy

 ��

 Parameters:

 Table 64. MQReadAllXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be read. If specified, the

receive-service must refer to a

service point defined in the

AMT.XML repository file.

However, if receive-service is

not specified, then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes.

Chapter 11. MQSeries stored procedures and functions 225

Table 64. MQReadAllXML parameters (continued)

Parameter Data type Description

service-policy VARCHAR(48) A string containing the

MQSeries AMI Service Policy

used in the handling of this

message. When the

service-policy is specified, it

refers to a Policy defined in

the AMT.XML repository file.

The maximum size of

receive-service is 48 bytes.

For additional information,

refer to the MQSeries

Application Messaging

Interface manual.

num-rows INTEGER A positive integer containing

the maximum number of

messages to be returned by

the function.

 Results:

 The MQReadAllXML function returns a table containing messages and message

metadata as described below.

 Table 65. Result set table

Column Name Data Type Description

MSG XMLVARCHAR The contents of the MQSeries

message. The maximum

length is 4K bytes.

CORRELID VARCHAR(24) A correlation ID that can be

used to relate to messages.

TOPIC VARCHAR(40) The topic the message was

published with, if available.

QNAME VARCHAR(48) The queue name the message

was received at

MSGID VARCHAR(24) The MQSeries assigned

unique identifier for a

message.

MSGFORMAT VARCHAR(8) The format of the message as

defined by MQSeries. Typical

strings have a format of

MQSTR.

 Examples:

 Example 1: All the messages from the queue that are specified by the default

service DB2.DEFAULT.SERVICE are read using the default policy

DB2.DEFAULT.POLICY. The messages and all the metadata are returned in a table

format.

 select * from table (DB2XML.MQREADALLXML()) t

Example 2: All messages that are specified by the service MYSERVICE by using the

default policy DB2.DEFAULT.POLICY. Only the msg and correlid columns are

returned. The message queue is in a table format, wherein you can select the fields

that you want.

select t.MSG, t.CORRELID from table (DB2XML.MQREADALLXML(’MYSERVICE’)) t

226 XML Extender Administration and Programming

Example 3: The queue that is specified by the default service

DB2.DEFAULT.SERVICE is read using the default policy DB2.DEFAULT.POLICY..

Only messages with a CORRELID of ’1234’ are returned. Up to 10 messages are

read and returned. All columns are returned.

select * from table (DB2XML.MQREADALLXML()) t where t.CORRELID = ’1234’

Example 4: The messages that are specified by the default service

DB2.DEFAULT.SERVICE are read using the default policy DB2.DEFAULT.POLICY .

All columns are returned.

select * from table (DB2XML.MQREADALLXML(10)) t

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

MQReadXMLCLOB function

 Purpose:

 The MQREADXMLCLOB function returns XMLCLOB data from the MQSeries

location specified by receive-service using the quality of service policy receive-policy.

Performing this operation does not remove the message from the queue associated

with the receive-service. The message at the head of the queue will be returned. The

return value is an XMLCLOB containing the messages. If no messages are available

to be returned a NULL will be returned.

 Syntax:

�� MQReadXMLCLOB ()

receive-service

receive-service

,

receive-policy

 ��

 Parameters:

 Table 66. MQReadXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be received. If specified, the

receive-service refers to a

Service Point defined in the

AMT.XML repository file. If

receive-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes

Chapter 11. MQSeries stored procedures and functions 227

Table 66. MQReadXMLCLOB parameters (continued)

Parameter Data type Description

receive-policy VARCHAR(48) A string containing the

MQSeries AMI Service Policy

used in the handling of this

message. When the

receive-policy is specified, it

refers to a Policy defined in

the AMT.XML repository file.

A Service Policy defines a set

of quality of service options

that are applied to the

messaging operation. These

options include message

priority and message

persistence. If the

receive-policy is not specified,

then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of receive-service is 48 bytes.

 Results:

 When a message in the queue has been read successfully, MQREADXMLCLOB

returns a db2xml.xmlclob. A NULL is returned if no messages are available.

MQReadAllXMLCLOB function

 Purpose:

 The MQReadAllXMLCLOB function returns a table containing the messages and

message metadata from the MQSeries location specified by receive-service using the

quality of service policy receive-service. Performing this operation does not remove

the messages from the queue associated with receive-service. If num-rows is

specified, then a maximum of num-rows messages will be returned. If num-rows is

not specified then all available messages will be returned.

 Syntax:

�� MQReadAllXMLCLOB ()

receive-service

num-rows

receive-service

,

service-policy

 ��

 Parameters:

228 XML Extender Administration and Programming

Table 67. MQReadAllXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be read. If specified, the

receive-service must refer to a

Service Point defined in the

AMT.XML repository file.

However, if receive-service is

not specified, then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes.

service-policy VARCHAR(48) A string containing the

MQSeries AMI service policy

used in the handling of this

message. When the

service-policy is specified, it

refers to a policy defined in

the AMT.XML repository file.

The maximum size of

service-policy is 48 bytes.

num-rows INTEGER A positive integer containing

the maximum number of

messages to be returned by

the function.

 Results:

 The MQReadAllXMLCLOB function returns a table containing messages and

message metadata as described below.

 Table 68. MQReadAllXMLCLOB Result set table

Column Name Data Type Description

MSG XMLCLOB The contents of the MQSeries

message, up to 1MB in

length.

CORRELID VARCHAR(24) A correlation ID that can be

used to relate messages.

TOPIC VARCHAR(40) The topic the message was

published with, if available.

QNAME VARCHAR(48) The queue name the message

was received at

MSGID VARCHAR(24) The MQSeries assigned

unique identifier for this

message

MSGFORMAT VARCHAR(8) The format of the message as

defined by MQSeries. Typical

strings have a format of

MQSTR.

Chapter 11. MQSeries stored procedures and functions 229

Example 1: All the messages from the queue that are specified by the default

service DB2.DEFAULT.SERVICE are read using the default policy

DB2.DEFAULT.POLICY. The messages and all the metadata are returned in a table

format.

 select * from table (DB2XML.MQREADALLXMLCLOB()) t

Example 2: Messages from the head of the queue are specified by the service

MYSERVICE by using the default policy DB2.DEFAULT.POLICY. Only the msg and

correlid columns are returned.

select t.MSG, t.CORRELID

from table (DB2XML.MQREADALLXMLCLOB(’MYSERVICE’)) t

Example 3: The head of the queue that is specified by the default service

DB2.DEFAULT.SERVICE is read using the default policy DB2.DEFAULT.POLICY .

Only messages with a CORRELID of ’1234’ are returned. All columns are returned.

select *

from table (DB2XML.MQREADALLXMLCLOB()) t where t.CORRELID = ’1234’

Example 4: The first 10 messages from the head of the queue that are specified by

the default service DB2.DEFAULT.SERVICE are read using the default policy

DB2.DEFAULT.POLICY. All columns are returned.

select * from table (DB2XML.MQREADALLXMLCLOB(10)) t

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

MQReceiveXML function

 Purpose:

 The MQReceiveXML removes one message associated with receive-service from the

queue. The function returns XMLVARCHAR data from the MQSeries location

specified by the receive-service function which uses the quality of receive-service.

 Syntax:

�� MQReceiveXML ()

receive-service

receive-service

,

service-policy

receive-service

,

service-policy

correl-id

 ��

 Parameters:

230 XML Extender Administration and Programming

Table 69. MQReceiveXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be received. If specified,

receive-service refers to a

service point defined in the

AMT.XML repository file. If

receive-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes.

service-policy VARCHAR(48) A string containing the

MQSeries AMI service policy

to be used in the handling of

this message. If specified, the

service-policy must refer to a

policy defined in the

AMT.XML repository file. If

the service-policy is not

specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of service-policy is 48 bytes.

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply to

scenarios to associate

requests with replies. If it is

not outlined, no correlation

ID will be specified. The

maximum size of correl-id is

24 bytes.

 Results:

 MQReceiveXML functions return a db2xml.XMLVARCHAR if the messages are

received from the queue successfully. The maximum message size is 4000 bytes. A

NULL is returned if no messages are available. If the correl-id is specified then the

first message with a matching correlation identifier will be returned. If correl-id is

not specified then the message at the head of the queue will be returned. The

message is removed from the queue.

 Examples:

 Example 1: This example receives the message that is at the head of the queue and

is specified by the default service DB2.DEFAULT.SERVICE using the default policy

DB2.DEFAULT.POLICY.

values db2xml.MQRECEIVEXML()

If successful this example returns the contents of a message as an XMLVARCHAR.

If no messages are available a NULL is returned.

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

Chapter 11. MQSeries stored procedures and functions 231

Related reference:

v “How to read syntax diagrams” on page viii

MQReceiveAllXML function

 Purpose:

 The MQReceiveAllXML removes messages associated with receive-service from the

queue. If the correl-id is specified then only those messages with a matching

correlation identifier will be returned. If correl-id is not specified then the message

at the head of the queue will be returned. If num-rows are specified, then a

maximum of num-rows messages will be returned. If it is not specified then all

available messages will be returned.

 Syntax:

�� MQReceiveALLXML ()

receive-service

num-rows

receive-service

,

receive-policy

receive-service

,

receive-policy

correl-id

 ��

 Parameters:

 Table 70. MQReceiveAllXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

to which the message is to be

sent. When specified, the

send-service refers to a Service

Point defined in the

ATM.XML repository file. If

send-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of send-service is 48 bytes.

receive-policy VARCHAR(48) A string containing the

MQSeries AMI service policy

to be used in the handling of

this message. If specified, the

receive-policy must refer to a

policy defined in the

AMT.XML repository file. If

the receive-policy is not

specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of receive-policy is 48 bytes.

232 XML Extender Administration and Programming

Table 70. MQReceiveAllXML parameters (continued)

Parameter Data type Description

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply

scenarios to associate

requests with replies. If it is

not outlined no correlation id

will be specified. The

maximum size of correl-id is

24 bytes.

num-rows INTEGER A positive integer that

contains the maximum

number of messages returned

by the function.

 Results:

 When a table of messages is successfully received from the queue,

MQRECEIVEXML returns a db2xml.xmlvarchar. A NULL is returned when no

messages are available. The messages are returned as a table of messages with

meta-data.

 Column Name Data type Description

MSG XMLVARCHAR The contents of the MQSeries

message.

CORRELID VARCHAR(24) A correlation ID that can be

used to relate messages.

TOPIC VARCHAR(40) The topic the message was

published with, if available.

QNAME VARCHAR(48) The queue name the message

was received at.

MSGID CHAR(24) The MQSeries assigned

unique identifier for this

message

MSGFORMAT VARCHAR(8) The format of the message as

defined by MQSeries. Typical

strings have a format of

MQSTR.

 Examples:

 Example 1: All messages received from the queue are specified by the default

service (DB2.DEFAULT.SERVICE) using the default policy

(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a

table.

select * from table (MQRECEIVEALLXML()) t

Example 2: All the messages are received from the head of the queue and are

specified by the service MYSERVICE using the default policy

(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

The messages are in table format, wherein you can select the fields that you want.

select t.MSG, t.CORRELID from table (MQRECEIVEALLXML(’MYSERVICE’)) t

Chapter 11. MQSeries stored procedures and functions 233

Example 3: All the messages received from the head of the queue are specified by

the service MYSERVICE using the policy MYPOLICY that match the id ’1234’.

Only the MSG and CORRELID columns are returned.

select t.MSG, t.CORRELID from table

(MQRECEIVEALLXML(’MYSERVICE’,’MYPOLICY’,’1234’)) t

Example 4: The first 10 messages are received from the head of the queue and

specified by the default service (DB2.DEFAULT.SERVICE) using the default policy

(DB2.DEFAULT.POLICY) . All columns are returned.

 select * from table (MQRECEIVEALLXML(10)) t

MQRcvAllXMLCLOB function

 Purpose:

 The MQRcvAllXMLCLOB removes the messages from the queue associated with

receive-service. If the correl-id is specified then only those messages with a matching

correlation identifier will be returned. If correl-id is not specified then all messages

will be returned. If num-rows is specified, then a maximum of num-rows messages

will be returned as XMLCLOB. If it is not specified then all available messages will

be returned.

 Syntax:

�� MQRcvAllXMLCLOB ()

receive-service

num-rows

receive-service

,

receive-policy

receive-service

,

receive-policy

correl-id

 ��

 Parameters:

 Table 71. MQRcvAllXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be received. If specified, the

receive-service refers to a

Service Point defined in the

AMT.XML repository file. If

receive-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes.

receive-policy VARCHAR(48) A string containing the

MQSeries AMI service policy

to be used in the handling of

this message. If specified, the

receive-policy must refer to a

policy defined in the

AMT.XML repository file. If

the receive-policy is not

specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of receive-policy is 48 bytes.

234 XML Extender Administration and Programming

Table 71. MQRcvAllXMLCLOB parameters (continued)

Parameter Data type Description

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply

scenarios to associate

requests with replies. If it is

not outlined no correlation id

will be specified. The

maximum size of correl-id is

24 bytes.

num-rows INTEGER A positive integer that

contains the maximum

number of messages returned

by the function.

 Results:

 When a message is successfully received from the queue, MQRcvAllXMLCLOB

returns an XMLCLOB. A NULL is returned when no messages are available. The

messages are returned in a table as described below

 Table 72. MQRcvAllXML result set table

Column Name Data type Description

MSG XMLCLOB The contents of the MQSeries

message.

CORRELID VARCHAR(24) A correlation ID that can be

used to relate messages.

TOPIC VARCHAR(40) If the topic the message was

published with, if available.

QNAME VARCHAR(48) The queue name the message

was received at.

MSGID CHAR(24) The MQSeries assigned

unique identifier for this

message

MSGFORMAT VARCHAR(8) The format of the message as

defined by MQSeries. Typical

strings have a format of

MQSTR.

MQReceiveXMLCLOB function

 Purpose:

 The MQReceiveXMLCLOB removes messages associated with receive-service from

the queue. The function returns XMLVARCHAR data from the MQSeries location

specified by the service-policy function which uses the quality of receive-service.

 Syntax:

Chapter 11. MQSeries stored procedures and functions 235

�� MQReceiveXMLCLOB ()

receive-service

receive-service

,

service-policy

receive-service

,

service-policy

correl-id

 ��

 Parameters:

 Table 73. MQReceiveXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the

logical MQSeries destination

from which the message is to

be received. When the

receive-service is specified, it

refers to a Service Point

defined in the AMT.XML

repository file. However, if

receive-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of receive-service is 48 bytes.

service-policy VARCHAR(48) A string containing the

MQSeries AMI Service Policy

to be used in handling of this

message. If specified, the

receive-service must refer to a

Policy defined in the

AMT.XML repository file. If

service-policy is not specified,

then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of service-policy is 48 bytes.

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply to

scenarios to associate

requests with replies. If it is

not outlined, no correlation

ID will be specified. The

maximum size of correl-id is

24 bytes.

 Results:

 MQReceiveXMLCLOB functions return a db2xml.XMLCLOB if messages are

received from the queue successfully. A NULL is returned if no messages are

available. If the correl-id is specified then the first message with a matching

correlation identifier will be returned. However, if the correl-id is not specified then

the message at the head of the queue will be returned.

MQSENDXML function

 Purpose:

236 XML Extender Administration and Programming

The MQSENDXML function sends the data contained in msg-data to the MQSeries

location specified by send-service using the send-policy. An optional user-defined

message correlation identifier can also be specified by correl-id. The function

returns a 1 if successful.

 Syntax:

�� MQSENDXML (msg-data ,)

send-service

correl-id

send-service

,

send-policy

 ��

 Parameters:

 Table 74. MQSendXML parameters

Parameter Data type Description

msg-data XMLVARCHAR or

XMLCLOB

An expression containing the

data to be sent via MQSeries.

send-service VARCHAR(48) A string containing the logical

MQSeries destination to

which the message is to be

sent. When the send-service is

listed, it refers to a Service

Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is

used when the send-service is

not specified. The maximum

size of send-service is 48 bytes.

send-policy VARCHAR(48) A string containing the

MQSeries AMI Service Policy

used to handle the message.

When specified, the

send-policy refers to a policy

defined in the AMT.XML

repository file. If the

send-policy is not specified,

then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of send-policy is 48 bytes.

correl-id VARCHAR(24) A string containing an

optional correlation identifier

associated with the message.

The correl-id is often

specified in request/reply

scenarios to associate requests

with replies. If it is not

specified, no correlation id

will be shown. The maximum

size of correl-id is 24 bytes.

 Results:

 A successful message results in a value of 1. A message containing msg-data will be

sent to the location specified by send-service using the policy defined by

send-policy.

Chapter 11. MQSeries stored procedures and functions 237

MQSENDXMLFILE function

 Purpose:

 The MQSENDXMLFILE function sends the data contained in xml_file to the

MQSeries location specified by send-service using the quality of service policy. An

optional user defined message correlation identifier can be specified by correl-id.

The function returns a ’1’ if successful.

 Syntax:

�� MQSENDXMLFILE (xml_file ,)

send-service

correl-id

send-service

,

send-policy

 ��

 Parameters:

 Table 75. MQSENDXMLFILE parameter

Parameter Data type Description

xml_file XMLCLOB An XML file name with a

maximum size of 80 bytes.

The file contains the data to

be sent via MQSeries.

send-service VARCHAR(48) A string containing the

logical MQSeries destination

to which the message is to be

sent. When specified, the

send-service refers to a Service

Point defined in the

AMT.XML repository file. If

send-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of send-service is 48 bytes.

send-policy VARCHAR(48) A string containing the

MQSeries AMI service to be

used in handling of this

message. If specified, the

send-policy refers to a Policy

defined in the AMT.XML

repository file. If send-policy is

not specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of send-policy is 48 bytes

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply

scenarios to associate

requests with replies. If not

specified, no correlation id

will be listed. The maximum

size of correl-id is 24 bytes.

 Results:

238 XML Extender Administration and Programming

If the function is successful, it results in a ’1’. The side effect of successfully

executing this function is that a message containing msg-data will be sent to the

location specified by send-service using the policy defined by send-policy.

 Examples:

 Example 1: XML documents contained in file ″c:\xml\test1.xml″ are sent to the

default service (DB2.DEFAULT.SERVICE) using the default policy

(DB2.DEFAULT.POLICY) with no correlation identifier.

Values MQSENDXMLFILE(’c:\xml\test1.xml’);

This example returns the value ’1’ if successful

Example 2: XML documents contained in file c:\xml\test2.xml are sent to the

service MYSERVICE using policy MYPOLICY with no correlation identifier.

Values MQSENDXMLFILE(’MYSERVICE’, ’MYPOLICY’, ’c:\xml\test2.xml’);

This example returns the value ’1’ if successful

Example 3: XML documents contained in file ″c:\xml\test3.xml″are sent to the

service MYSERVICE using policy MYPOLICY with correlation identifier ″Test3″.

Values MQSENDXML(’MYSERVICE’,’MYPOLICY’, ’c:\xml\test3.xml’, ’Test3’);

This example returns the value ’1’ if successful.

Example 4: XML documents contained in file ″c:\xml\test4.xml″ are sent to the

service MYSERVICE using the default policy (DB2.DEFAULT.POLICY) and no

correlation identifier.

Values MQSENDXMLFILE(’MYSERVICE’, ’c:\xml\test4.xml’);

This example returns the value ’1’ if successful.

MQSendXMLFILECLOB function

 Purpose:

 The MQSendXMLFILECLOB function sends the data contained in xml_file to the

MQSeries location specified by send-service using the quality of send-policy. The

data type that is sent is XMLCLOB. An optional user defined message correlation

identifier can be specified by correl-id. The function returns a 1 if successful.

 Syntax:

�� MQSendXMLFILECLOB (xml_file ,)

send-service

correl-id

send-service

,

send-policy

 ��

 Parameters:

 Table 76. MQSENDXMLFILE parameter

Parameter Data type Description

xml_file XMLCLOB An XML file name with a

maximum size of 80 bytes.

The file contains the data to

be sent via MQSeries.

Chapter 11. MQSeries stored procedures and functions 239

Table 76. MQSENDXMLFILE parameter (continued)

Parameter Data type Description

send-service VARCHAR(48) A string containing the

logical MQSeries destination

to which the message is to be

sent. When specified, the

send-service refers to a

Service Point defined in the

AMT.XML repository file. If

send-service is not specified,

then the

DB2.DEFAULT.SERVICE will

be used. The maximum size

of send-service is 48 bytes

send-policy VARCHAR(48) A string containing the

MQSeries AMI service to be

used in handling of this

message. If specified, the

send-policy refers to a Policy

defined in the AMT.XML

repository file. If send-policy is

not specified, then the default

DB2.DEFAULT.POLICY will

be used. The maximum size

of send-policy is 48 bytes

correl-id VARCHAR(24) A string containing an

optional correlation identifier

to be associated with this

message. The correl-id is often

specified in request/reply

scenarios to associate

requests with replies. If not

specified, no correlation id

will be listed. The maximum

size of correl-id is 24 bytes.

 Results:

 If the function is successful, it results in a ’1’. The side effect of successfully

executing this function is that a message containing msg-data will be sent to the

location specified by send-service using the policy defined by send-policy.

Types of stored procedures for message queues

 Composition stored procedures:

 Use the composition stored procedures, dxxmqGen(), dxxmqGenCLOB(),

dxxmqRetrieve(), and dxxmqRetrieveCLOB() to generate XML documents using

data in existing database tables, and to send the generated XML documents to a

message queue. The dxxmqGen() and dxxmqGenCLOB() stored procedures use a

DAD file as input. They do not require enabled XML collections. The

dxxmqRetrieve and dxxmqRetrieveCLOB stored procedures use collection names

as input.

 Decomposition stored procedures:

240 XML Extender Administration and Programming

The decomposition stored procedures dxxmqInsert(), dxxmqInsertAll(),

dxxInsertCLOB(), dxxmqShred(), dxxmqShredCLOB, and dxxmqShredAll() are

used to break down or shred incoming XML documents from a message queue,

and to store the data in new or existing database tables.

The dxxmqInsert(), dxxmqInsertAll(), dxxmqInsertAllCLOB(), and dxxInsertCLOB()

stored procedures use an enabled XML collection name as input.

The dxxmqShred(), dxxmqShredAll(), dxxmqShredCLOB, and

dxxmqShredAllCLOB stored procedures use a DAD file as input. They do not

require an enabled XML collection.

The table below summarizes the different stored procedures and explains their

functions.

 Table 77. The MQSeries XML stored procedures

Function Purpose

dxxmqGen Invoke the dxxmqGen stored procedure to

compose XML documents, using a DAD file

as a input parameter. The resulting document

type is XMLVARCHAR(4000).

dxxmqGenCLOB Constructs an XML document from data that

is stored in the XML collection tables

specified in the DAD file, and sends the

XML document to an MQ message queue.

The resulting document type is

XMLCLOB(1M).

dxxmqRetrieve Invoke the dxxmqRetrieve stored procedure

to compose XML documents, using a

collection name as a input parameter. The

resulting document type is

XMLVARCHAR(4000).

dxxmqRetrieveCLOB Invoke the dxxmqRetrieve stored procedure

to compose XML documents, using a

collection name as a input parameter. The

resulting document type is XMLCLOB(1M).

dxxmqShred Invoke the dxxmqShred stored procedure to

decompose an XML document using a DAD

file as an input parameter. The resulting

document type is XMLVARCHAR(4000).

dxxmqShredAll Invoke the dxxmqShredAll stored procedure

to decompose multiple XML documents

using a DAD file as an input parameter. The

resulting document type is

XMLVARCHAR(4000).

dxxmqShredCLOB Decomposes an incoming XML document

from a message queue, based on a DAD file

mapping, and stores the content of the XML

elements and attributes in specified DB2

UDB tables. The resulting document type is

XMLCLOB(1M).

Chapter 11. MQSeries stored procedures and functions 241

Table 77. The MQSeries XML stored procedures (continued)

Function Purpose

dxxmqShredAllCLOB Decomposes an incoming XML document

from a message queue, based on a DAD file

mapping, and stores the content of the XML

elements and attributes in specified DB2

UDB tables. The resulting document type is

XMLCLOB(1M).

dxxmqInsert Invoke the dxxmqInsert stored procedure to

decompose an XML document using a

collection name as an input parameter. The

resulting document type is

XMLVARCHAR(4000).

dxxmqInsertAll Invoke the dxxmqInsertAll stored procedure

to decompose multiple XML documents

using a collection name as an input

parameter. The resulting document type is

XMLVARCHAR(4000).

dxxmqInsertCLOB Breaks down or shreds an incoming XML

document from a message queue, and stores

the data in new or existing database tables.

The resulting document type is

XMLCLOB(1M).

dxxmqInsertAllCLOB Breaks down or shreds all incoming XML

documents from a message queue, and stores

the data in new or existing database tables.

The dxxmqInsertAllCLOB stored procedure

uses a collection name, rather than a DAD

file name, to determine how to store the

data. The resulting document type is

XMLCLOB(1M).

 Related reference:

v “dxxmqGenCLOB stored procedure” on page 245

v “dxxmqRetrieve stored procedure” on page 247

v “dxxmqRetrieveCLOB stored procedure” on page 249

v “dxxmqShred stored procedure” on page 251

v “dxxmqShredAll stored procedure” on page 253

v “dxxmqShredCLOB stored procedure” on page 254

v “dxxmqInsert stored procedure” on page 256

v “dxxmqInsertAll stored procedure” on page 260

v “dxxmqInsertCLOB stored procedure” on page 258

v “dxxmqGen() stored procedure” on page 242

v “dxxmqShredAllCLOB stored procedure” on page 255

v “dxxmqInsertAllCLOB stored procedure” on page 261

dxxmqGen() stored procedure

 Purpose:

242 XML Extender Administration and Programming

Constructs an XML document from data that is stored in the XML collection tables

specified in the DAD file, and sends the XML document to a MQ message queue.

The stored procedure returns a string to indicate the status of the stored procedure.

To support dynamic query, dxxmqGen() takes an input parameter, override. Based

on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

 Syntax:

 dxxmqGen(varchar(48) serviceName, /*input*/

 varchar(48) policyName, /*input*/

 varchar(80) dadFileName, /*input*/

 integer overrideType, /*input*/

 varchar(1024) override, /*input*/

 integer maxRows, /*input*/

 integer numRows, /*output*/

 char(20) status) /*output*/

 Parameters:

 Table 78. dxxmqGen() parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a service point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERIVCE is used when the

serviceName is not specified. The maximum

size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML repository

file. If the policyName is not specified, then

the default DB2.DEFAULT.POLICY will be

used. The maximum size of policyName is

48 bytes.

IN

dadFileName The name of the DAD file. IN

overrideType A flag to indicate the type of the following

override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

Chapter 11. MQSeries stored procedures and functions 243

Table 78. dxxmqGen() parameters (continued)

Parameter Description IN/OUT

parameter

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks separated by

″AND″. Using this overrideType requires

that RDB_node mapping is used in the

DAD file.

IN

maxRows The maximum number of messages

generated in the message queue.

IN

numRows The actual number of generated rows in

the message queue.

OUT

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Examples:

 The following example fragment generates an XML document and sends it to the

queue. It assumes that a MQ/AMI service, myService, and a policy, myPolicy, have

been defined in the repository file. This file stores repository definitions in XML

format.

#include "dxx.h"

#include "dxxrc.h"

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48]; /* name of the MQ/AMI service*/

 char policyName[48]; /* name of the MQ/AMI policy*/

 char dadFileName[80]; /* name of the DAD file */

 char override[2]; /* override, will set to NULL*/

 short overrideType; /* defined in dxx.h */

 short max_row; /* maximum number of rows */

 short num_row; /* actual number of rows */

 char status[20] /* status code or message */

 short ovtype_ind;

 short ov_ind;

 short maxrow_ind;

 short numrow_ind;

 short dadFileName_ind;

 short serviceName_ind;

 short policyName_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 strcpy(dadFileName,"c:\dxx\dad\litem3.dad");

 strcpy(serviceName,"myService");

 strcpy(policyName,"myPolicy");

244 XML Extender Administration and Programming

override[0] = ’\0’;

 overrideType = NO_OVERRIDE;

 max_row = 500;

 num_row = 0;

 status[0] = ’\0’;

 dadFileName_ind = 0;

 serviceName_ind = 0;

 policyName_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 ovtype_ind=0;

 ov_ind=-1;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqGen(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :dadFileName:dadFileName_ind,

 :overrideType:ovtype_ind,

 :override:ov_ind,

 :max_row:maxrow_ind,

 :num_row:numrow_ind,

 :status:status_ind);

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related tasks:

v “Calling XML Extender composition stored procedures” on page 201

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqGenCLOB stored procedure

 Purpose:

 Constructs an XML document from data that is stored in the XML collection tables

specified in the DAD file, and sends the XML document to a MQ message queue.

The document type is XMLCLOB. The stored procedure returns a string to indicate

the status of the stored procedure. This stored procedure is not supported for the

Enterprise Server Edition (ESE).

To support dynamic query, dxxmqGenCLOB takes an input parameter, override.

Based on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

 Syntax:

 dxxmqGenCLOB(varchar(48) serviceName, /*input*/

 varchar(48) policyName, /*input*/

 varchar(80) dadFileName, /*input*/

 integer overrideType, /*input*/

 varchar(1024) override, /*input*/

 integer maxRows, /*input*/

 integer numRows, /*output*/

 char(20) status) /*output*/

Chapter 11. MQSeries stored procedures and functions 245

Parameters:

 Table 79. dxxmqGenCLOB parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a service point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERIVCE is used when the

serviceName is not specified. The maximum

size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML repository

file. If the policyName is not specified, then

the default DB2.DEFAULT.POLICY will be

used. The maximum size of policyName is

48 bytes.

IN

dadFileName The name of the DAD file. IN

overrideType A flag to indicate the type of the following

override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks separated by

″AND″. Using this overrideType requires

that RDB_node mapping is used in the

DAD file.

IN

maxRows The maximum number of messages

generated in the message queue.

IN

numRows The actual number of generated rows in

the message queue.

OUT

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

246 XML Extender Administration and Programming

Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqRetrieve stored procedure

 Purpose:

 The stored procedure dxxmqRetrieve() serves as a means for retrieving

decomposed XML documents. As input, dxxmqRetrieve() takes a buffer containing

the enabled XML collection name, the MQ/AMI service and policy names. It sends

the composed XML document to a MQ Queue; it returns the number of rows sent

to the queue and a status message. The dxxmqRetrieve stored procedure enables

the same DAD file to be used for both composition and decomposition.

To support dynamic query, dxxmqRetrieve() takes an input parameter, override.

Based on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

The requirements of the DAD file for dxxmqRetrieve() are the same as the

requirements for dxxmqGen(). The only difference is that the DAD is not an input

parameter for dxxmqRetrieve(); the required parameter is instead the name of an

enabled XML collection.

 Syntax:

 dxxmqRetrieve(varchar(48) serviceName, /*input*/

 varchar(48) policyName, /*input*/

 varchar(80) collectionName, /*input*/

 integer overrideType, /*input*/

 varchar(1024) override, /*input*/

 integer maxrows, /*input*/

 integer numrows, /*output*/

 char(20) status) /*output*/

 Parameters:

 Table 80. dxxmqRetrieve() parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when

the serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

Chapter 11. MQSeries stored procedures and functions 247

Table 80. dxxmqRetrieve() parameters (continued)

Parameter Description IN/OUT

parameter

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

collectionName The name of an enabled collection. IN

overrideType A flag to indicate the type of the

following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD

file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks separated by

″AND″. The maximum length is 1024

bytes. The overrideType string requires

that RDB_node mapping is used in the

DAD file.

IN

maxRows The maximum number of rows in the

result table.

IN

numRows The actual number generated rows in the

result table.

OUT

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Examples:

 The following fragment is an example of a call to dxxmqRetrieve().

#include "dxx.h"

#include "dxxrc.h"

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48]; /* name of the MQ/AMI service*/

 char policyName[48]; /* name of the MQ/AMI policy*/

248 XML Extender Administration and Programming

char collection[32]; /* name of the XML collection */

 char override[2]; /* override, will set to NULL*/

 short overrideType; /* defined in dxx.h */

 short max_row; /* maximum number of rows */

 short num_row; /* actual number of rows */

 char status[20]; /* status code or message */

 short ovtype_ind;

 short ov_ind;

 short maxrow_ind;

 short numrow_ind;

 short collection_ind;

 short serviceName_ind;

 short policyName_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(collection,"sales_ord");

 strcpy(serviceName,"myService");

 strcpy(policyName,"myPolicy");

 override[0] = ’\0’;

 overrideType = NO_OVERRIDE;

 max_row = 500;

 num_row = 0;

 status[0] = ’\0’;

 serviceName_ind = 0;

 policyName_ind = 0;

 collection_ind = 0;

 maxrow_ind = 0;

 numrow_ind = -1;

 ovtype_ind=0;

 ov_ind=-1;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqRetrieve(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :collection:collection_ind,

 :overrideType:ovtype_ind,

 :override:ov_ind,

 :max_row:maxrow_ind,

 :num_row:numrow_ind,

 :status:status_ind);

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqRetrieveCLOB stored procedure

 Purpose:

 The stored procedure dxxmqRetrieveCLOB serves as a means for retrieving

decomposed XML documents. As input, dxxmqRetrieveCLOB takes a buffer

containing the enabled XML collection name, the MQ/AMI service and policy

names. It sends the composed XML document to a MQ Queue; and it returns the

number of rows sent to the queue and a status message.The dxxmqRetrieveCLOB

Chapter 11. MQSeries stored procedures and functions 249

stored procedure enables the same DAD file to be used for both composition and

decomposition. This stored procedure is not supported for Enterprise Server

Edition (ESE).

To support dynamic query, dxxmqRetrieveCLOB takes an input parameter, override.

Based on the input overrideType, the application can override the SQL_stmt for SQL

mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.

The input parameter overrideType is used to clarify the type of the override.

The requirements of the DAD file for dxxmqRetrieveCLOB are the same as the

requirements for dxxmqGenCLOB. The only difference is that the DAD is not an

input parameter for dxxmqRetrieveCLOB; the required parameter is instead the

name of an enabled XML collection.

 Syntax:

 dxxmqRetrieveCLOB(varchar(48) serviceName, /*input*/

 varchar(48) policyName, /*input*/

 varchar(80) collectionName, /*input*/

 integer overrideType, /*input*/

 varchar(1024) override, /*input*/

 integer maxrows, /*input*/

 integer numrows, /*output*/

 char(20) status) /*output*/

 Parameters:

 Table 81. dxxmqRetrieveCLOB parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when

the serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

collectionName The name of an enabled collection. IN

overrideType A flag to indicate the type of the

following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an

SQL_stmt.

v XML_OVERRIDE: Override by an

XPath-based condition.

IN

250 XML Extender Administration and Programming

Table 81. dxxmqRetrieveCLOB parameters (continued)

Parameter Description IN/OUT

parameter

override Overrides the condition in the DAD file.

The input value is based on the

overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL

statement. Using this overrideType

requires that SQL mapping is used in

the DAD file. The input SQL statement

overrides the SQL_stmt in the DAD

file.

v XML_OVERRIDE: A string that

contains one or more expressions in

double quotation marks separated by

″AND″. The maximum size is 1024

bytes. The overrideType string requires

that RDB_node mapping is used in the

DAD file.

IN

maxRows The maximum number of rows in the

result table.

IN

numRows The actual number generated rows in the

result table.

OUT

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqShred stored procedure

 Purpose:

 Decomposes an incoming XML document from a message queue, based on a DAD

file mapping, and stores the content of the XML elements and attributes in

specified DB2 UDB tables.

In order for dxxmqShred() to work, all tables specified in the DAD file must exist,

and all columns and their data types that are specified in the DAD must be

consistent with the existing tables. The stored procedure requires that the columns

specified in the join condition, in the DAD, correspond to primary- foreign key

relationships in the existing tables. The join condition columns that are specified in

the RDB_node of the root element_node must exist in the tables.

 Syntax:

Chapter 11. MQSeries stored procedures and functions 251

dxxmqShred(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) dadFileName, /* input */

 varchar(10) status) /* output */

 Parameters:

 Table 82. dxxmqShred() parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when the

serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

dadFileName The name of the DAD file. The maximum

size is 80 bytes.

IN

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Examples:

 The following fragment is an example of a call to dxxmqShred().

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48]; /* name of the MQ/AMI service */

 char policyName[48]; /* name of the MQ/AMI policy */

 char dadFileName[80]; /* name of the DAD file */

 char status[20]; /* status code or message */

 short serviceName_ind;

 short policyName_ind;

 short dadFileName_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");

 strcpy(serviceName, "myService");

 strcpy(policyName, "myPolicy");

 status[0]=’\0’;

 serviceName_ind=0;

252 XML Extender Administration and Programming

policyName_ind=0;

 dadFileName_ind=0;

 status_ind=-1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqShred(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :dadFileName:dadFileName_ind,

 :status:status_ind);

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

dxxmqShredAll stored procedure

 Purpose:

 Decomposes all incoming XML documents from a message queue, based on a

DAD file mapping. The contents of the XML elements and attributes are stored in

specified DB2 UDB tables.

In order for dxxmqShredAll() to work, all tables specified in the DAD file must

exist, and all columns and their data types that are specified in the DAD must be

consistent with the existing tables. The stored procedure requires that the columns

specified in the join condition, in the DAD, correspond to primary-foreign key

relationships in the existing tables. The join condition columns that are specified in

the RDB_node of the root element_node must exist in the tables.

 Syntax:

 dxxmqShredAll(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) dadFileName, /* input */

 varchar(20) status) /* output */

 Parameters:

 Table 83. dxxmqShredAll() parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when the

serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

dadFileName The name of the DAD file. The maximum

size is 80 bytes.

IN

Chapter 11. MQSeries stored procedures and functions 253

Table 83. dxxmqShredAll() parameters (continued)

Parameter Description IN/OUT

parameter

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Examples:

 The following fragment is an example of a call to dxxmqShredAll().

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48]; /* name of the MQ/AMI service */

 char policyName[48]; /* name of the MQ/AMI policy */

 char dadFileName[80]; /* name of the DAD file */

 char status[20]; /* status code or message */

 short serviceName_ind;

 short policyName_ind;

 short dadFileName_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");

 strcpy(serviceName, "myService");

 strcpy(policyName, "myPolicy");

 status[0]=\0;

 serviceName_ind=0;

 policyName_ind=0;

 dadFileName_ind=0;

 status_ind=-1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqShredAll(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :dadFileName:dadFileName_ind,

 :status:status_ind);

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqShredCLOB stored procedure

 Purpose:

 Decomposes an incoming XML document from a message queue, based on a DAD

file mapping, and stores the content of the XML elements and attributes in

specified DB2 UDB tables. The incoming document type is XMLCLOB.

254 XML Extender Administration and Programming

For dxxmqShredCLOB, all tables specified in the DAD file must exist, and all

columns and data types that are specified in the DAD must be consistent with the

existing tables. This stored procedure requires that the columns specified in the

join condition of the DAD, correspond to primary-foreign key relationships in the

existing tables. The joint condition columns that are specified in the RDB_node of

the root element_node must exist in the tables.

 Syntax:

 dxxmqShredCLOB(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) dadFileName, /* input */

 varchar(10) status) /* output */

 Parameters:

 Table 84. dxxmqShredCLOB parameters

Parameter Description IN/OUT

parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when the

serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

dadFileName The name of the DAD file. The maximum

size in 80 bytes.

IN

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqShredAllCLOB stored procedure

 Purpose:

Chapter 11. MQSeries stored procedures and functions 255

Decomposes an incoming XML document from a message queue, based on a DAD

file mapping, and stores the content of the XML elements and attributes in

specified DB2 UDB tables.

For dxxmqShredAllCLOB, all tables specified in the DAD file must exist, and all

columns and data types that are specified in the DAD must be consistent with the

existing tables. This stored procedure requires that the columns specified in the

join condition of the DAD, correspond to primary-foreign key relationships in the

existing tables. The joint condition columns that are specified in the RDB_node of

the root element_node must exist in the tables.

 Syntax:

 dxxmqShredCLOB(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) dadFileName, /* input */

 varchar(10) status) /* output */

 Parameters:

 Table 85. dxxmqShredAllCLOB parameters

Parameter Description IN/OUT

Parameter

serviceName A string containing the logical MQSeries

destination to which the message is to be

sent. When the serviceName is listed, it

refers to a Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used when the

serviceName is not specified. The

maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI

Service Policy used to handle messages.

When specified, the policyName refers to a

policy defined in the AMT.XML

repository file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be used. The

maximum size of policyName is 48 bytes.

IN

dadFileName The name of the DAD file. The maximum

size is 80 bytes.

IN

status The text and codes returned that specify

whether or not the stored procedure ran

successfully, any error codes that are

generated, and the number of XML

documents which are received or sent to

the message queue.

OUT

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

dxxmqInsert stored procedure

 Purpose:

256 XML Extender Administration and Programming

Breaks down or shreds an incoming XML document from a message queue, and

stores the data in new or existing database tables. dxxmqInsert uses a collection

name, rather than a DAD file name, to determine how to store the data.

 Syntax:

 dxxmqInsert(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) collectionName, /* input */

 varchar(20) status) /* output */

 Parameters:

 Table 86. dxxmqInsert() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical

MQSeries destination to which the

message is to be sent. When the

serviceName is listed, it refers to a

Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used

when the serviceName is not

specified. The maximum size of

serviceName is 48 bytes.

IN

policyName A string containing the MQSeries

AMI Service Policy used to handle

messages. When specified, the

policyName refers to a policy

defined in the AMT.XML repository

file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be

used. The maximum size of

policyName is 48 bytes.

IN

collectionName The name of an enabled XML

collection. The maximum size is 80

bytes.

IN

status The text and codes returned that

specify whether or not the stored

procedure ran successfully, any

error codes that are generated, and

the number of XML documents

which are received or sent to the

message queue.

OUT

 Examples:

 In the following fragment example, the dxxmqInsert() call retrieves the input XML

document order1.xml from a message queue defined by serviceName, decomposes

the document, and inserts data into the SALES_ORDER collection tables according

to the mapping that is specified in the DAD file with which it was enabled.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48];

Chapter 11. MQSeries stored procedures and functions 257

char policyName[48];

 char collection[80]; /* name of an XML collection */

 char status[10];

 short serviceName_ind;

 short policyName_ind;

 short collection_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(serviceName, "myService");

 strcpy(policyName, "myPolicy");

 strcpy(collection,"sales_ord")

 status[0]=\0;

 serviceName_ind = 0;

 policyName_ind = 0;

 collection_ind = 0;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqInsert(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :collection:collection_ind,

 :status:status_ind);

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqInsertCLOB stored procedure

 Purpose:

 Breaks down or shreds an incoming XML document from a message queue, and

stores the data in new or existing database tables. dxxmqInsertCLOB uses a

collection name, rather than a DAD file name, to determine how to store the data.

The incoming document type is XMLCLOB

 Syntax:

 dxxmqInsertCLOB(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(80) collectionName, /* input */

 varchar(20) status) /* output */

258 XML Extender Administration and Programming

Parameters:

 Table 87. dxxmqInsertCLOB() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical

MQSeries destination to which the

message is to be sent. When the

serviceName is listed, it refers to a

Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used

when the serviceName is not

specified. The maximum size of

serviceName is 48 bytes.

IN

policyName A string containing the MQSeries

AMI Service Policy used to handle

messages. When specified, the

policyName refers to a policy

defined in the AMT.XML repository

file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be

used. The maximum size of

policyName is 48 bytes.

IN

collectionName The name of an enabled XML

collection.

IN

status The text and codes returned that

specify whether or not the stored

procedure ran successfully, any

error codes that are generated, and

the number of XML documents

which are received or sent to the

message queue.

OUT

 Examples:

 In the following fragment example, the dxxmqInsertCLOB() call retrieves the input

XML document order1.xml from a message queue defined by serviceName,

decomposes the document, and inserts data into the SALES_ORDER collection

tables according to the mapping that is specified in the DAD file with which it was

enabled.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48];

 char policyName[48];

 char collection[48]; /* name of an XML collection */

 char status[10];

 short serviceName_ind;

 short policyName_ind;

 short collection_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(serviceName, "myService");

Chapter 11. MQSeries stored procedures and functions 259

strcpy(policyName, "myPolicy");

 strcpy(collection,"sales_ord")

 status[0] = \0;

 serviceName_ind = 0;

 policyName_ind = 0;

 collection_ind = 0;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqInsertCLOB(:serviceName:serviceName_ind;

 :policyName:policyName_ind,

 :collection:collection_ind,

 :status:status_ind);

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

dxxmqInsertAll stored procedure

 Purpose:

 Breaks down or shreds all incoming XML documents from a message queue, and

stores the data in new or existing database tables. dxxmqInsertAll uses a collection

name, rather than a DAD file name, to determine how to store the data.

 Syntax:

 dxxmqInsertAll(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(48) collectionName, /* input */

 varchar(20) status) /* output */

 Parameters:

 Table 88. dxxmqInsertAll() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical

MQSeries destination to which the

message is to be sent. When the

serviceName is listed, it refers to a

Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used

when the serviceName is not

specified. The maximum size of

serviceName is 48 bytes.

IN

policyName A string containing the MQSeries

AMI Service Policy used to handle

messages. When specified, the

policyName refers to a policy

defined in the AMT.XML repository

file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be

used. The maximum size of

policyName is 48 bytes.

IN

collectionName The name of an enabled XML

collection. The maximum size is 80

bytes.

IN

260 XML Extender Administration and Programming

Table 88. dxxmqInsertAll() parameters (continued)

Parameter Description IN/OUT parameter

status The text and codes returned that

specify whether or not the stored

procedure ran successfully, any

error codes that are generated, and

the number of XML documents

which are received or sent to the

message queue.

OUT

 Examples:

 In the following fragment example, the dxxmqInsertAll call retrieves all input XML

documents from a message queue defined by serviceName, decomposes the

documents, and inserts data into the SALES_ORDER collection tables according to

the mapping that is specified in the DAD file with which it was enabled.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48];

 char policyName[48];

 char collection[80]; /* name of an XML collection */

 char status[10];

 short serviceName_ind;

 short policyName_ind;

 short collection_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(serviceName, "myService");

 strcpy(policyName, "myPolicy");

 strcpy(collection,"sales_ord");

 status[0]=’\0’;

 serviceName_ind = 0;

 policyName_ind = 0;

 collection_ind = 0;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqInsertAll(:serviceName:serviceName_ind,

 :policyName:policyName_ind,

 :collection:collection_ind,

 :status:status_ind);

 Related concepts:

v “XML Extender stored procedures and functions for MQSeries” on page 221

 Related reference:

v “How to read syntax diagrams” on page viii

v Appendix C, “XML Extender limits,” on page 311

dxxmqInsertAllCLOB stored procedure

 Purpose:

Chapter 11. MQSeries stored procedures and functions 261

Breaks down or shreds all incoming XML documents from a message queue, and

stores the data in new or existing database tables. The dxxmqInsertAllCLOB stored

procedure uses a collection name, rather than a DAD file name, to determine how

to store the data.

 Syntax:

 dxxmqInsertAllCLOB(varchar(48) serviceName, /* input */

 varchar(48) policyName, /* input */

 varchar(48) collectionName, /* input */

 varchar(20) status) /* output */

 Parameters:

 Table 89. dxxmqInsertAllCLOB() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical

MQSeries destination to which the

message is to be sent. When the

serviceName is listed, it refers to a

Service Point defined in the

AMT.XML repository file. The

DB2.DEFAULT.SERVICE is used

when the serviceName is not

specified. The maximum size of

serviceName is 48 bytes.

IN

policyName A string containing the MQSeries

AMI Service Policy used to handle

messages. When specified, the

policyName refers to a policy

defined in the AMT.XML repository

file. If the policyName is not

specified, then the default

DB2.DEFAULT.POLICY will be

used. The maximum size of

policyName is 48 bytes.

IN

collectionName The name of an enabled XML

collection.

IN

status The text and codes returned that

specify whether or not the stored

procedure ran successfully, any

error codes that are generated, and

the number of XML documents

which are received or sent to the

message queue.

OUT

 Examples:

 In the following fragment example, the dxxmqInsertAllCLOB call retrieves all

input XML documents from a message queue defined by serviceName, decomposes

the documents, and inserts data into the SALES_ORDER collection tables according

to the mapping that is specified in the DAD file with which it was enabled.

#include "dxx.h"

#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char serviceName[48];

262 XML Extender Administration and Programming

char policyName[48];

 char collection[48]; /* name of an XML collection */

 char status[10];

 short serviceName_ind;

 short policyName_ind;

 short collection_ind;

 short status_ind;

 EXEC SQL END DECLARE SECTION;

 /* initialize host variable and indicators */

 strcpy(serviceName, "myService");

 strcpy(policyName, "myPolicy");

 strcpy(collection,"sales_ord")

 status[0] = ’\0’;

 serviceName_ind = 0;

 policyName_ind = 0;

 collection_ind = 0;

 status_ind = -1;

 /* Call the store procedure */

 EXEC SQL CALL dxxmqInsertAllCLOB(:serviceName:serviceName_ind;

 :policyName:policyName_ind,

 :collection:collection_ind,

 :status:status_ind);

 Related reference:

v Appendix C, “XML Extender limits,” on page 311

Chapter 11. MQSeries stored procedures and functions 263

264 XML Extender Administration and Programming

Chapter 12. Extensible stylesheet language transformation

(XSLT)

Creating an HTML document using an XSLT stylesheet

The Extensible stylesheet language transformation(XSLT) consists of a series of

markups that can be used to apply formatting rules to each of the elements inside

an XML document. XSL works by applying various style rules to the contents of an

XML document based on the elements that it encounters. By design, XSLT

stylesheets are regular XML documents.

Originally created for page layout, XSLT is now used in a variety of ways. For

example, it can be used as a general-purpose translation tool, a system for

reorganizing document content, or a way to generate multiple results such as

HTML, WAP, and SVG from a single source.

XSLT is a critical bridge between XML processing and more familiar languages

such as HTML.XSLT, and allows you to transform an XML structure into other

data types by removing or replacing the XML tags. It also allows you to change

the order of the information, extract some special information, or sort the

information.

 Prerequisites:

 To create an HTML document using a stylesheet, you need to complete the

following tasks:

1. Create an XML file in the result table.

2. Create a stylesheet.

You can create your HTML file by using XSLTransformToFile or

XSLTransformToClob. This output file can be written either on the DB2 UDB server

or from the command line in a text editor.

 Procedure:

 To create your HTML file on the DB2 UDB server, type the following syntax:

SELECT XSLTransformToFile(CAST(doc AS CLOB(4k)),

 ’$dxx_install$\samples\db2xml\xslt\getstart.xsl’,

 0,

 ’$dxx_install$\samples\db2xml\html\getstart.html’)

 FROM RESULT_TAB

where $dxx_install$ is the directory where you installed DB2 XML Extender.

To create your HTML file from the command line, open any text editor and type

the following command:

getstart_xslt.cmd

 Related reference:

v “XSLTransformToClob() stored procedure” on page 266

v “XSLTransformToFile() stored procedure” on page 267

© Copyright IBM Corp. 1999, 2004 265

XSLTransformToClob() stored procedure

 Purpose:

 XSLTransformToClob() reads an XML document as CLOB locator and a stylesheet

as CLOB or from a file, and returns the document as CLOB.

 Syntax:

�� XSLTransformToClob (xmlobj , stylesheet , validate)

,

param
 ��

 Parameters:

 Parameter Data type Description

xmlobj CLOB The XML document

stylesheet CLOB,

VARCHAR

The style sheet

The location and name of the

stylesheet input file

param CLOB

VARCHAR

The XML parameter

document.

The location and name of the

XML parameter fil.

validate INTEGER Enable (1) or disable (0)

validation of the xmlobj

 Results:

 The XSLTransformToClob() returns a data of CLOB type if successful.

 Examples:

 The following examples create a sample table and store the two input files in the

database: getstart.xml and getstart.xsl. The database must be enabled for XML

Extender.

CREATE TABLE xslt_tab(xmlobj CLOB(4k), stylesheet CLOB(4k))

INSERT INTO xslt_tab(xmlobj, stylesheet) VALUES(

 DB2XML.XMLCLOBFromFile(’c:\dxx_installsamples\db2xml\xml\getstart.xml

’),

DB2XML.XMLCLOBFromFile(’c:\dxx_installsamples\db2xml\xslt\getstart.xsl

’))

Example 1: The following example transforms an XML document into a HTML

document using the table created:

SELECT XSLTransformToClob(xmlobj, stylesheet)

FROM xslt_tab

Example 2: This example transforms an XML document into an HTML document

using a stylesheet file

SELECT XSLTransformToClob(xmlobj,

 c:\dxx_installsamples\db2xml\xslt\getstart.xsl

’)

 FROM xslt_tab

Example 3: In this example the output is changed by additional parameters. The

XML parameter document must define the namespace. The parameters must be

wrapped in the <param> element. The corresponding value also can be specified in

a value attribute, or in the content of the <param> element.

266 XML Extender Administration and Programming

c:\dxx_install\samples\db2xml\xml\getstart_xslt_param.xml:

<?xml version="1.0"?>

<params xmlns="http://www.ibm.com.XSLtransformParameters">

 <param name="noShipments" value="true"/>

 <param name="headline">The customers...</param>

</params>

SELECT XSLTranfsormToClob(xmlobj, stylesheet, param, 1)

FROM xslt_tab

XSLTransformToFile() stored procedure

 Purpose:

 Reads an XML document as a CLOB and a style sheet as a CLOB or from a file.

The XSLTransformToFile() user-defined function(UDF) then writes the results from

the style sheet and XML document into a file. When a directory and a file

extension are given as parameters, the UDF will create a file with a unique

filename in this directory.

 Syntax:

�� XSLTransformToFile (xmlobj , stylesheet ,

,

param
 validate , �

� filename)

,

dir

,

suffix
 ��

 Parameters:

 Table 90. XSLTransformDir() parameter descriptions

Parameter Data type Description

xmlobj CLOB The XML document

stylesheet CLOB

VARCHAR

The style sheet

The location and name of the

stylesheet input file

param VARCHAR

VARCH

The XML parameter

document

The location and name of the

XML parameter file

validate INTEGER Enable (1) or disable (0)

validation of the xmlobj

filename VARCHAR The name of the output file

dir VARCHAR The directory of the output

file

suffix VARCHAR The suffix of the output file

 Results:

 The XSLTransformToFile() returns a VARCHAR for the written file name.

 Examples:

 The following example creates a sample table and stores two files in the

getstart.xml and getstart.xsl tables. To create the sample table, the DB2 UDB

database must be enabled for XML Extender.

Chapter 12. Extensible stylesheet language transformation (XSLT) 267

CREATE TABLE xslt_tab(xmlobj CLOB(4k), stylesheet CLOB(4k))

INSERT INTO xslt_tab(xmlobj, stylesheet) VALUES(

DB2XML.XMLCLOBFromFile(’$dxx_install$\samples\db2xml\xml\getstart.xml

’),

DB2XML.XMLCLOBFromFile(’$dxx_install$\samples\db2xml\xslt\getstart.xsl

’))

where $dxx_install$ is the directory where you installed DB2 XML Extender.

Example 1: This example transforms the XML document into an HTML document

and writes the created document to the specified file:

SELECT XSLTransformFile(xmlobj, stylesheet,

 ’$dxx_install$samples\db2xml\html\getstart.html

 FROM xslt_tab

where $dxx_install$ is the directory where you installed DB2 XML Extender.

Example 2: This example writes an HTML document to a file using a stylesheet

file. Validation is enabled but the result is the same. This feature is necessary to

include default values from an XML schema in the transformation process. No

parameters are specified. The file name is generated by the UDF.

SELECT XSLTransformToFile(xmlobj,

 ’/$dxx_install$\samples/db2xml/xslt/getstart.xsl’,

 ’/$dxx_install$\samples/db2xml/html/getstart.html’)

 FROM xslt_tab

where $dxx_install$ is the directory where you installed DB2 XML Extender.

Example 3: In this example the output is changed by additional parameters. The

XML parameter document must define the namespace. The parameters must be

wrapped in the <param> element. The corresponding value also can be specified in

a value attribute, or in the content of the <param> element.

$dxx_install$\samples\db2xml\xml\getstart_xslt_param.xml:’, ’html’)

<?xml version="1.0"?>

<params xmlns="http://www.ibm.com.XSLtransformParameters">

 <param name="noShipments" value="true"/>

 <param name="headline">The customers...</param>

</params>

where $dxx_install$ is the directory where you installed DB2 XML Extender.

Example 4: This example writes an HTML document into a file using a stylesheet

file and stores the file name for each row in an additional column in the table.

UPDATE TABLE xslt_tab ADD COLUMN filename VARCHAR(512)

UPDATE TABLE xslt_tab SET filename =

 XSLTransformToFile(xmlobj,stylesheet, param, 1,

 ’$dxx_install$samples\db2xml\html

 ’, ’html’)

 FROM xslt_tab

where $dxx_install$ is the directory where you installed DB2 XML Extender.

268 XML Extender Administration and Programming

Chapter 13. XML Extender administration support tables

 When a database is enabled, a DTD repository table (DTD_REF) and an

XML_USAGE table are created. The DTD_REF table contains information about all

of the DTDs. The XML_USAGE table stores common information for each

XML-enabled column. Each is created with specific PUBLIC privileges.

DTD reference table

The XML Extender also serves as an XML DTD repository. When a database is

XML-enabled, a DTD repository table, DTD_REF, is created. Each row of this table

represents a DTD with additional metadata information. You can access this table,

and insert your own DTDs. The DTDs in the DTD_REF table are used to validate

XML documents and to help applications to define a DAD file. It has the schema

name of DB2XML. A DTD_REF table can have the columns shown in Table 91.

 Table 91. DTD_REF table

Column name Data type Description

DTDID VARCHAR(128) The primary key (unique and not NULL). It is

used to identify the DTD. When the DTD is

specified in the DAD file, the DAD file must

adhere to the schema that is defined by the

DTD.

CONTENT XMLCLOB The content of the DTD.

ROW_ID ROWID An identifier of the row.

USAGE_COUNT INTEGER The number of XML columns and XML

collections in the database that use the DTD to

define their DAD files.

AUTHOR VARCHAR(128) The author of the DTD. This information is

optional.

CREATOR VARCHAR(128) The user ID that does the first insertion. This

column is optional.

UPDATOR VARCHAR(128) The user ID that does the last update. This

column is optional.

A DTD can be modified by the application only when the USAGE_COUNT is zero.

Privileges granted to PUBLIC

Privileges of INSERT, UPDATE, DELETE, and SELECT are granted for PUBLIC.

XML usage table (XML_USAGE)

The XML_USAGE table stores common information for each XML-enabled column.

The XML_USAGE table’s schema name is DB2XML, and its primary key is

(table_name, col_name). Only read privileges of this table are granted to PUBLIC.

An XML_USAGE table is created at the time the database is enabled. The columns

in the XML_USAGE table are shown in Table 92 on page 270.

© Copyright IBM Corp. 1999, 2004 269

Table 92. XML_USAGE table

Column name Description

table_schema For an XML column, the schema name of the

user table that contains an XML column. For

an XML collection, a value of DXX_COLL as

the default schema name.

table_name For an XML column, the name of the user

table that contains an XML column. For an

XML collection, a value DXX_COLLECTION,

which identifies the entity as a collection.

col_name The name of the XML column or XML

collection. It is part of the composite key

along with the table_name.

DTDID A string associating a DTD inserted into

DTD_REF with a DTD specified in a DAD

file; this value must match the value of the

DTDID element in the DAD. This column is

a foreign key.

DAD The content of the DAD file that is

associated with the XML column or XML

collection.

access_mode Specifies which access mode is used: 1 for

XML collection, 0 for XML column

default_view Stores the default view name if there is one.

trigger_suffix Not NULL. For unique trigger names.

validation 1 for yes, 0 for no

row_id An identifier of the row.

Do not add, modify, or delete entries from the XML_USAGE table; it is for XML

Extender internal use only.

Privileges granted to PUBLIC

For XML_USAGE, the privilege of SELECT is granted for PUBLIC. INSERT,

DELETE, and UPDATE are granted to DB2XML.

270 XML Extender Administration and Programming

Chapter 14. Troubleshooting

Troubleshooting XML_Extender

 All embedded SQL statements in your program and DB2 UDB command line

interface (CLI) calls in your program, including those that invoke the DB2 UDB

XML Extender user-defined functions (UDFs), generate codes that indicate whether

the embedded SQL statement or DB2 UDB CLI call ran successfully.

Your program can retrieve information that supplements these codes including

SQLSTATE information and error messages. You can use this diagnostic

information to isolate and fix problems in your program.

Occasionally the source of a problem cannot be easily diagnosed. In these cases,

you might need to provide information to IBM Software Support to isolate and fix

the problem. The XML Extender includes a trace facility that records XML Extender

activity. The trace information can be valuable input to IBM Software Support. You

should use the trace facility only under instruction from IBM Software Support.

This chapter describes the trace facility, and error codes and messages.

 Related reference:

v “SQLSTATE codes and associated message numbers for XML Extender” on page

274

v “XML Extender messages” on page 278

v “Stopping the trace” on page 272

v “Starting the trace for XML Extender” on page 271

Starting the trace for XML Extender

 Purpose:

 Records the XML Extender server activity. To start the trace, apply the on option to

dxxtrc, along with the name of an existing directory to contain the trace file. When

the trace is turned on, the file, dxxDB2.trc, is placed in the specified directory. The

trace file is not limited in size.

 Syntax:

 Starting the trace from the USS command line:

�� dxxtrc on trace_directory ��

 Starting the trace from TSO:

 call ’dxx.load(dxxtrc)’ ’on "trace_directory"’ asis

 Starting the trace from JCL:

 //STEP EXEC PGM=DXXTRC,

// PARM=’on "trace_directory"’

© Copyright IBM Corp. 1999, 2004 271

Parameters:

 Table 93. Trace parameters

Parameter Description

trace_directory Name of an existing USS path and directory

where the dxxdb2.trc is placed. Required, no

default.

 Examples:

 The following example demonstrates starting the trace for an instance db2inst1.

The trace file, dxxdb2inst1.trc, is placed in the /home/db2inst1/dxx_install/log

directory.

dxxtrc on /home/db2inst1/dxx_install/log

The following examples show starting the trace, with file, dxxdb2.trc, in the

/u/user1/dxx/trace directory.

From USS:

dxxtrc on /u/user1/trace

From TSO:

call ’dxx.load(dxxtrc)’ ’on "/u/user1/dxx/trace"’ asis

From JCL:

//STEP EXEC PGM=DXXTRC,

// PARM=’on "/u/user1/dxx/trace"’

Stopping the trace

 Purpose:

 Turns the trace off. Trace information is no longer logged.

Recommendation: Because running the trace log file size is not limited and can

impact performance, turn trace off in a production environment.

 Syntax:

 Stopping the trace from the USS command line:

�� dxxtrc off ��

 Stopping the trace from TSO:

 call ’dxx.load(dxxtrc)’ ’off’ asis

 Stopping the trace from JCL:

 //STEP EXEC PGM=DXXTRC,

// PARM=’off’

 Examples:

 This example shows that the trace facility is turned off.

dxxtrc off

The following examples demonstrate stopping the trace.

272 XML Extender Administration and Programming

From USS:

dxxtrc off

From TSO:

call ’dxx.load(dxxtrc)’ ’off’ asis

From JCL:

//STEP EXEC PGM=DXXTRC,

// PARM=’off’

XML Extender UDF return codes

 Embedded SQL statements return codes in the SQLCODE, SQLWARN, and

SQLSTATE fields of the SQLCA structure. This structure is defined in an SQLCA

INCLUDE file. (For more information about the SQLCA structure and SQLCA

INCLUDE file, see the DB2 Application Development GuideDB2 Application

Programming and SQL Guide.)

DB2 CLI calls return SQLCODE and SQLSTATE values that you can retrieve using

the SQLError function. (For more information about retrieving error information

with the SQLError function, see the ODBC Guide and Reference.)

An SQLCODE value of 0 means that the statement ran successfully (with possible

warning conditions). A positive SQLCODE value means that the statement ran

successfully but with a warning. (Embedded SQL statements return information

about the warning that is associated with 0 or positive SQLCODE values in the

SQLWARN field.) A negative SQLCODE value means that an error occurred.

DB2 associates a message with each SQLCODE value. If an XML Extender UDF

encounters a warning or error condition, it passes associated information to DB2

UDB for inclusion in the SQLCODE message.

Embedded SQL statements and DB2 UDB CLI calls that invoke the DB2 XML

Extender UDFs might return SQLCODE messages and SQLSTATE values that are

unique to these UDFs, but DB2 UDB returns these values in the same way that it

does for other embedded SQL statements or other DB2 UDB CLI calls. Thus, the

way that you access these values is the same as for embedded SQL statements or

DB2 UDB CLI calls that do not start the DB2 UDB XML Extender UDFs.

XML Extenders stored procedure return codes

 The XML Extender provides return codes to help resolve problems with stored

procedures. When you receive a return code from a stored procedure, check the

following file, which matches the return code with an XML Extender error message

number and the symbolic constant.

dxx_install/include/dxxrc.h

 Related reference:

v “SQLSTATE codes and associated message numbers for XML Extender” on page

274

Chapter 14. Troubleshooting 273

SQLSTATE codes and associated message numbers for XML Extender

 Table 94. SQLSTATE codes and associated message numbers

SQLSTATE Message Number Description

00000 DXXnnnnI No error occurred.

01HX0 DXXD003W The element or attribute specified in

the path expression is missing from

the XML document.

38X00 DXXC000E The XML Extender is unable to

open the specified file.

38X01 DXXA072E XML Extender tried to

automatically bind the database

before enabling it, but could not

find the bind files.

DXXC001E The XML Extender could not find

the file specified.

38X02 DXXC002E The XML Extender is unable to read

data from the specified file.

38X03 DXXC003E The XML Extender is unable to

write data to the file.

DXXC011E The XML Extender is unable to

write data to the trace control file.

38X04 DXXC004E The XML Extender was unable to

operate the specified locator.

38X05 DXXC005E The file size is greater than the

XMLVarchar size, and the XML

Extender is unable to import all the

data from the file.

38X06 DXXC006E The file size is greater than the size

of the XMLCLOB, and the XML

Extender is unable to import all the

data from the file.

38X07 DXXC007E The number of bytes in the LOB

locator does not equal the file size.

38X08 DXXD001E A scalar extraction function used a

location path that occurs multiple

times. A scalar function can use

only a location path that does not

have multiple occurrence.

38X09 DXXD002E The path expression is syntactically

incorrect.

38X10 DXXG002E The XML Extender was unable to

allocate memory from the operating

system.

38X11 DXXA009E This stored procedure is for an XML

column only.

38X12 DXXA010E While attempting to enable the

column, the XML Extender could

not find the DTD ID, which is the

identifier specified for the DTD in

the document access definition

(DAD) file.

274 XML Extender Administration and Programming

Table 94. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message Number Description

DXXQ060E The XML Extender could not find

the SCHEMA ID while attempting

to enable the column. The SCHEMA

ID corresponds to the value of the

location attribute of the

nonamespacelocation tag which is

inside the schemabindings tag in

the DAD file.

38X14 DXXD000E There was an attempt to store an

invalid document into a table.

Validation failed.

38X15 DXXA056E The validation element in the

document access definition (DAD)

file is wrong or missing.

DXXA057E The name attribute of a side table in

the document access definition

(DAD) file is wrong or missing.

DXXA058E The name attribute of a column in

the document access definition

(DAD) file is wrong or missing.

DXXA059E The type attribute of a column in

the document access definition

(DAD) file is wrong or missing.

DXXA060E The path attribute of a column in

the document access definition

(DAD) file is wrong or missing.

DXXA061E The multi_occurrence attribute of a

column in the document access

definition (DAD) file is wrong or

missing.

DXXQ000E A mandatory element is missing

from the document access definition

(DAD) file.

DXXQ056E The specified element/attribute

cannot be mapped to a column that

is specified as part of a foreign key.

Data values for foreign keys are

determined by that of the primary

keys; a mapping of the specified

element/attribute in the XML

document to a table and column is

not necessary.

DXXQ057E The schemabindings and DTD ID

tags cannot exist together in the

DAD file.

DXXQ058E The nonamespacelocation tag inside

the schemabindings tag is missing

in the DAD file.

DXXQ059E The doctype tag cannot be located

inside the XCollection tag in the

DAD for schema validation.

Chapter 14. Troubleshooting 275

Table 94. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message Number Description

DXXQ062E This error condition is usually

caused by a missing

multi_occurrence = YES

specification on the parent

element_node of the given element

or attribute.

DXXQ063E The value of the multi_occurrence

attribute on the specified

element_node in the document

access definition (DAD) file is

wrong or missing. The value must

be ’yes’ or ’no’, case insensitive.

DXXQ064E A key column specified in the join

condition was not mapped to any

element or attribute node.

38X16 DXXG004E A null value for a required

parameter was passed to an XML

stored procedure.

38X17 DXXQ001E The SQL statement in the document

access definition (DAD) file or the

statement that overrides it is not

valid. A SELECT statement is

required for generating XML

documents.

38X18 DXXG001E XML Extender encountered an

internal error.

DXXG006E XML Extender encountered an

internal error while using CLI.

38X19 DXXQ002E The system is running out of space

in memory or disk. There is no

space to contain the resulting XML

documents.

38X20 DXXQ003W The user-defined SQL query

generates more XML documents

than the specified maximum. Only

the specified number of documents

are returned.

38X21 DXXQ004E The specified column is not one of

the columns in the result of the SQL

query.

38X22 DXXQ005E The mapping of the SQL query to

XML is incorrect.

38X23 DXXQ006E An attribute_node element in the

document access definition (DAD)

file does not have a name attribute.

38X24 DXXQ007E The attribute_node element in the

document access definition (DAD)

does not have a column element or

RDB_node.

276 XML Extender Administration and Programming

Table 94. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message Number Description

38X25 DXXQ008E A text_node element in the

document access definition (DAD)

file does not have a column

element.

38X26 DXXQ009E The specified result table could not

be found in the system catalog.

38X27 DXXQ010E

DXXQ040E

The RDB_node of the

attribute_node or text_node must

have a table.

DXXQ011E The RDB_node of the

attribute_node or text_node must

have a column.

DXXQ017E An XML document generated by

the XML Extender is too large to fit

into the column of the result table.

DXXQ040E The specified element name in

document access definition (DAD)

file is wrong.

38X28 DXXQ012E XML Extender could not find the

expected element while processing

the DAD.

DXXQ016E All tables must be defined in the

RDB_node of the top element in the

document access definition (DAD)

file. Sub-element tables must match

the tables defined in the top

element. The table name in this

RDB_node is not in the top element.

38X29 DXXQ013E The element table or column must

have a name in the document access

definition (DAD) file.

DXXQ015E The condition in the condition

element in the document access

definition (DAD) file has an invalid

format.

DXXQ061E The format of the string

representation is invalid. If the

string is a date, time, or timestamp

value, the syntax does not conform

to its data type.

38X30 DXXQ014E An element_node element in the

document access definition (DAD)

file does not have a name attribute.

DXXQ018E The ORDER BY clause is missing

from the SQL statement in a

document access definition (DAD)

file that maps SQL to XML.

38X31 DXXQ019E The objids element does not have a

column element in the document

access definition (DAD) file that

maps SQL to XML.

Chapter 14. Troubleshooting 277

Table 94. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message Number Description

38x33 DXXG005E This parameter is not supported in

this release. It will be supported in

the future release.

38x34 DXXG000E An invalid file name was specified.

38X36 DXXA073E The database was not bound when

you tried to enable it.

38X37 DXXG007E The server operating system locale

is inconsistent with the DB2 UDB

code page.

38X38 DXXG008E The server operating system locale

can not be found in the code page

table.

38X41 DXXQ048E The stylesheet processor returned

an internal error. The XML

document or the stylesheet might

not be vaild.

38X42 DXXQ049E The specified output file already

exists in this directory.

38X43 DXXQ050E The UDF was unable to create a

unique file name for the output

document in the specified directory

because it does not have access. All

file names that can be generated are

in use or directory might not exist.

38X44 DXXQ051E One or more input or output

parameters have no valid value.

38X45 DXXQ055E ICU error encountered during

conversion operation.

XML Extender messages

DXXA000I Enabling column <column_name>. Please

Wait.

Explanation: This is an informational message.

User Response: No action required.

DXXA001S An unexpected error occurred in build

<build_ID>, file <file_name>, and line

<line_number>.

Explanation: An unexpected error occurred.

User Response: If this error persists, contact your

Software Service Provider. When reporting the error, be

sure to include all the message text, the trace file, and

an explanation of how to reproduce the problem.

DXXA002I Connecting to database <database>.

Explanation: This is an informational message.

User Response: No action required.

DXXA003E Cannot connect to database <database>.

Explanation: The database specified might not exist or

could be corrupted.

User Response:

1. Ensure the database is specified correctly.

2. Ensure the database exists and is accessible.

3. Determine if the database is corrupted. If it is, ask

your database administrator to recover it from a

backup.

278 XML Extender Administration and Programming

DXXA004E Cannot enable database <database>.

Explanation: The database might already be enabled

or might be corrupted.

User Response:

1. Determine if the database is enabled.

2. Determine if the database is corrupted. If it is, ask

your database administrator to recover it from a

backup.

DXXA005I Enabling database <database>. Please

wait.

Explanation: This is an informational message.

User Response: No action required.

DXXA006I The database <database> was enabled

successfully.

Explanation: This is an informational message.

User Response: No action required.

DXXA007E Cannot disable database <database>.

Explanation: The database cannot be disabled by XML

Extender if it contains any XML columns or collections.

User Response: Backup any important data, disable

any XML columns or collections, and update or drop

any tables until there are no XML data types left in the

database.

DXXA008I Disabling column <column_name>.

Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA009E Xcolumn tag is not specified in the

DAD file.

Explanation: This stored procedure is for XML

Column only.

User Response: Ensure the Xcolumn tag is specified

correctly in the DAD file.

DXXA010E Attempt to find DTD ID <dtdid> failed.

Explanation: While attempting to enable the column,

the XML Extender could not find the DTD ID, which is

the identifier specified for the DTD in the document

access definition (DAD) file.

User Response: Ensure the correct value for the DTD

ID is specified in the DAD file.

DXXA011E Inserting a record into

DB2XML.XML_USAGE table failed.

Explanation: While attempting to enable the column,

the XML Extender could not insert a record into the

DB2XML.XML_USAGE table.

User Response: Ensure the DB2XML.XML_USAGE

table exists and that a record by the same name does

not already exist in the table.

DXXA012E Attempt to update DB2XML.DTD_REF

table failed.

Explanation: While attempting to enable the column,

the XML Extender could not update the

DB2XML.DTD_REF table.

User Response: Ensure the DB2XML.DTD_REF table

exists. Determine whether the table is corrupted or if

the administration user ID has the correct authority to

update the table.

DXXA013E Attempt to alter table <table_name>

failed.

Explanation: While attempting to enable the column,

the XML Extender could not alter the specified table.

User Response: Check the privileges required to alter

the table.

DXXA014E The specified root ID column: <root_id>

is not a single primary key of table

<table_name>.

Explanation: The root ID specified is either not a key,

or it is not a single key of table table_name.

User Response: Ensure the specified root ID is the

single primary key of the table.

DXXA015E The column DXXROOT_ID already

exists in table <table_name>.

Explanation: The column DXXROOT_ID exists, but

was not created by XML Extender.

User Response: Specify a primary column for the root

ID option when enabling a column, using a different

different column name.

DXXA016E The input table <table_name> does not

exist.

Explanation: The XML Extender was unable to find

the specified table in the system catalog.

User Response: Ensure that the table exists in the

database, and is specified correctly.

Chapter 14. Troubleshooting 279

DXXA017E The input column <column_name> does

not exist in the specified table

<table_name>.

Explanation: The XML Extender was unable to find

the column in the system catalog.

User Response: Ensure the column exists in a user

table.

DXXA018E The specified column is not enabled for

XML data.

Explanation: While attempting to disable the column,

XML Extender could not find the column in the

DB2XML.XML_USAGE table, indicating that the

column is not enabled. If the column is not

XML-enabled, you do not need to disable it.

User Response: No action required.

DXXA019E A input parameter required to enable

the column is null.

Explanation: A required input parameter for the

enable_column() stored procedure is null.

User Response: Check all the input parameters for the

enable_column() stored procedure.

DXXA020E Columns cannot be found in the table

<table_name>.

Explanation: While attempting to create the default

view, the XML Extender could not find columns in the

specified table.

User Response: Ensure the column and table name

are specified correctly.

DXXA021E Cannot create the default view

<default_view>.

Explanation: While attempting to enable a column, the

XML Extender could not create the specified view.

User Response: Ensure that the default view name is

unique. If a view with the name already exists, specify

a unique name for the default view.

DXXA022I Column <column_name> enabled.

Explanation: This is an informational message.

User Response: No response required.

DXXA023E Cannot find the DAD file.

Explanation: While attempting to disable a column,

the XML Extender was unable to find the document

access definition (DAD) file.

User Response: Ensure you specified the correct

database name, table name, or column name.

DXXA024E The XML Extender encountered an

internal error while accessing the system

catalog tables.

Explanation: The XML Extender was unable to access

system catalog table.

User Response: Ensure the database is in a stable

state.

DXXA025E Cannot drop the default view

<default_view>.

Explanation: While attempting to disable a column,

the XML Extender could not drop the default view.

User Response: Ensure the administration user ID for

XML Extender has the privileges necessary to drop the

default view.

DXXA026E Unable to drop the side table

<side_table>.

Explanation: While attempting to disable a column,

the XML Extender was unable to drop the specified

table.

User Response: Ensure that the administrator user ID

for XML Extender has the privileges necessary to drop

the table.

DXXA027E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The system is out of memory.

v A trigger with this name does not exist.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA028E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The system is out of memory.

v A trigger with this name does not exist.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

280 XML Extender Administration and Programming

DXXA029E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The system is out of memory.

v A trigger with this name does not exist.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA030E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The system is out of memory.

v A trigger with this name does not exist.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA031E Unable to reset the DXXROOT_ID

column value in the application table to

NULL.

Explanation: While attempting to disable a column,

the XML Extender was unable to set the value of

DXXROOT_ID in the application table to NULL.

User Response: Ensure that the administrator user ID

for XML Extender has the privileges necessary to alter

the application table.

DXXA032E Decrement of USAGE_COUNT in

DB2XML.XML_USAGE table failed.

Explanation: While attempting to disable the column,

the XML Extender was unable to reduce the value of

the USAGE_COUNT column by one.

User Response: Ensure that the

DB2XML.XML_USAGE table exists and that the

administrator user ID for XML Extender has the

necessary privileges to update the table.

DXXA033E Attempt to delete a row from the

DB2XML.XML_USAGE table failed.

Explanation: While attempting to disable a column,

the XML Extender was unable to delete its associate

row in the DB2XML.XML_USAGE table.

User Response: Ensure that the

DB2XML.XML_USAGE table exists and that the

administration user ID for XML Extender has the

privileges necessary to update this table.

DXXA034I XML Extender has successfully disabled

column <column_name>.

Explanation: This is an informational message

User Response: No action required.

DXXA035I XML Extender is disabling database

<database>. Please wait.

Explanation: This is an informational message.

User Response: No action is required.

DXXA036I XML Extender has successfully disabled

database <database>.

Explanation: This is an informational message.

User Response: No action is required.

DXXA037E The specified table space name is longer

than 18 characters.

Explanation: The table space name cannot be longer

than 18 alphanumeric characters.

User Response: Specify a name less than 18

characters.

DXXA038E The specified default view name is

longer than 18 characters.

Explanation: The default view name cannot be longer

than 18 alphanumeric characters.

User Response: Specify a name less than 18

characters.

DXXA039E The specified ROOT_ID name is longer

than 18 characters.

Explanation: The ROOT_ID name cannot be longer

than 18 alphanumeric characters.

User Response: Specify a name less than 18

characters.

DXXA046E Unable to create the side table

<side_table>.

Explanation: While attempting to enable a column, the

XML Extender was unable to create the specified side

table.

User Response: Ensure that the administrator user ID

for XML Extender has the privileges necessary to create

the side table.

Chapter 14. Troubleshooting 281

DXXA047E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA048E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA049E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA050E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA051E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The system is out of memory.

v A trigger with this name does not exist.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA052E Could not disable the column.

Explanation: XML Extender could not disable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA053E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

DXXA054E Could not enable the column.

Explanation: XML Extender could not enable a

column because an internal trigger failed. Possible

causes:

v The DAD file has incorrect syntax.

v The system is out of memory.

v Another trigger exists with the same name.

User Response: Use the trace facility to create a trace

file and try to correct the problem. If the problem

persists, contact your Software Service Provider and

provide the trace file.

282 XML Extender Administration and Programming

DXXA056E The validation value <validation_value>

in the DAD file is invalid.

Explanation: The validation element in document

access definition (DAD) file is wrong or missing.

User Response: Ensure that the validation element is

specified correctly in the DAD file.

DXXA057E A side table name <side_table_name> in

DAD is invalid.

Explanation: The name attribute of a side table in the

document access definition (DAD) file is wrong or

missing.

User Response: Ensure that the name attribute of a

side table is specified correctly in the DAD file.

DXXA058E A column name <column_name> in the

DAD file is invalid.

Explanation: The name attribute of a column in the

document access definition (DAD) file is wrong or

missing.

User Response: Ensure that the name attribute of a

column is specified correctly in the DAD file.

DXXA059E The type <column_type> of column

<column_name> in the DAD file is

invalid.

Explanation: The type attribute of a column in the

document access definition (DAD) file is wrong or

missing.

User Response: Ensure that the type attribute of a

column is specified correctly in the DAD file.

DXXA060E The path attribute <location_path> of

<column_name> in the DAD file is

invalid.

Explanation: The path attribute of a column in the

document access definition (DAD) file is wrong or

missing.

User Response: Ensure that the path attribute of a

column is specified correctly in the DAD file.

DXXA061E The multi_occurrence attribute

<multi_occurrence> of <column_name> in

the DAD file is invalid.

Explanation: The multi_occurrence attribute of a

column in the document access definition (DAD) file is

wrong or missing.

User Response: Ensure that the multi_occurrence

attribute of a column is specified correctly in the DAD

file.

DXXA062E Unable to retrieve the column number

for <column_name> in table <table_name>.

Explanation: XML Extender could not retrieve the

column number for column_name in table table_name

from the system catalog.

User Response: Make sure the application table is

well defined.

DXXA063I Enabling collection <collection_name>.

Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA064I Disabling collection <collection_name>.

Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA065E Calling stored procedure

<procedure_name> failed.

Explanation: Check the shared library db2xml and see

if the permission is correct.

User Response: Make sure the client has permission

to run the stored procedure.

DXXA066I XML Extender has successfully disabled

collection <collection_name>.

Explanation: This is an informational message.

User Response: No response required.

DXXA067I XML Extender has successfully enabled

collection <collection_name>.

Explanation: This is an informational message.

User Response: No response required.

DXXA068I XML Extender has successfully turned

the trace on.

Explanation: This is an informational message.

User Response: No response required.

DXXA069I XML Extender has successfully turned

the trace off.

Explanation: This is an informational message.

User Response: No response required.

Chapter 14. Troubleshooting 283

DXXA070W The database has already been enabled.

Explanation: The enable database command was

executed on the enabled database

User Response: No action is required.

DXXA071W The database has already been disabled.

Explanation: The disable database command was

executed on the disabled database

User Response: No action is required.

DXXA072E XML Extender couldn’t find the bind

files. Bind the database before enabling

it.

Explanation: XML Extender tried to automatically

bind the database before enabling it, but could not find

the bind files

User Response: Bind the database before enabling it.

DXXA073E The database is not bound. Please bind

the database before enabling it.

Explanation: The database was not bound when user

tried to enable it.

User Response: Bind the database before enabling it.

DXXA074E Wrong parameter type. The stored

procedure expects a STRING parameter.

Explanation: The stored procedure expects a STRING

parameter.

User Response: Declare the input parameter to be

STRING type.

DXXA075E Wrong parameter type. The input

parameter should be a LONG type.

Explanation: The stored procedure expects the input

parameter to be a LONG type.

User Response: Declare the input parameter to be a

LONG type.

DXXA076E XML Extender trace instance ID invalid.

Explanation: Cannot start trace with the instance ID

provided.

User Response: Ensure that the instance ID is a valid

iSeries user ID.

DXXA077E The license key is not valid. See the

server error log for more detail.

Explanation: The software license has expired or does

not exist.

User Response: Contact your service provider to

obtain a new software license.

DXXC000E Unable to open the specified file.

Explanation: The XML Extender is unable to open the

specified file.

User Response: Ensure that the application user ID

has read and write permission for the file.

DXXC001E The specified file is not found.

Explanation: The XML Extender could not find the file

specified.

User Response: Ensure that the file exists and the

path is specified correctly.

DXXC002E Unable to read file.

Explanation: The XML Extender is unable to read data

from the specified file.

User Response: Ensure that the application user ID

has read permission for the file.

DXXC003E Unable to write to the specified file.

Explanation: The XML Extender is unable to write

data to the file.

User Response: Ensure that the application user ID

has write permission for the file or that the file system

has sufficient space.

DXXC004E Unable to operate the LOB Locator:

rc=<locator_rc>.

Explanation: The XML Extender was unable to

operate the specified locator.

User Response: Ensure the LOB Locator is set

correctly.

DXXC005E Input file size is greater than

XMLVarchar size.

Explanation: The file size is greater than the

XMLVarchar size and the XML Extender is unable to

import all the data from the file.

User Response: Use the XMLCLOB column type.

DXXC006E The input file exceeds the DB2 UDB

LOB limit.

Explanation: The file size is greater than the size of

the XMLCLOB and the XML Extender is unable to

import all the data from the file.

User Response: Decompose the file into smaller

objects or use an XML collection.

284 XML Extender Administration and Programming

DXXC007E Unable to retrieve data from the file to

the LOB Locator.

Explanation: The number of bytes in the LOB Locator

does not equal the file size.

User Response: Ensure the LOB Locator is set

correctly.

DXXC008E Can not remove the file <file_name>.

Explanation: The file has a sharing access violation or

is still open.

User Response: Close the file or stop any processes

that are holding the file. You might have to stop and

restart DB2.

DXXC009E Unable to create file to <directory>

directory.

Explanation: The XML Extender is unable to create a

file in directory directory.

User Response: Ensure that the directory exists, that

the application user ID has write permission for the

directory, and that the file system has sufficient space

for the file.

DXXC010E Error while writing to file <file_name>.

Explanation: There was an error while writing to the

file file_name.

User Response: Ensure that the file system has

sufficient space for the file.

DXXC011E Unable to write to the trace control file.

Explanation: The XML Extender is unable to write

data to the trace control file.

User Response: Ensure that the application user ID

has write permission for the file or that the file system

has sufficient space.

DXXC012E Cannot create temporary file.

Explanation: Cannot create file in system temp

directory.

User Response: Ensure that the application user ID

has write permission for the file system temp directory

or that the file system has sufficient space for the file.

DXXC013E The results of the extract UDF exceed

the size limit for the UDF return type.

Explanation: The data returned by an extract UDF

must fit into the size limit of the return type of the

UDF, as defined in the DB2 UDB XML Extenders

Administration and Programming guide. For example,

the results of extractVarchar must be no more than 4000

bytes (including the terminating NULL).

User Response: Use an extract UDF that has a larger

size limit for the return type: 254 bytes for

extractChar(), 4 KB for extractVarchar(), and 2 GB for

extractClob().

DXXD000E An invalid XML document is rejected.

Explanation: There was an attempt to store an invalid

document into a table. Validation has failed.

User Response: Check the document with its DTD

using an editor that can view invisible invalid

characters. To suppress this error, turn off validation in

the DAD file.

DXXD001E <location_path> occurs multiple times.

Explanation: A scalar extraction function used a

location path that occurs multiple times. A scalar

function can only use a location path that does not

have multiple occurrences.

User Response: Use a table function (add an ’s’ to the

end of the scalar function name).

DXXD002E A syntax error occurred near position

<position> in the search path.

Explanation: The path expression is syntactically

incorrect.

User Response: Correct the search path argument of

the query. Refer to the documentation for the syntax of

path expressions.

DXXD003W Path not found. Null is returned.

Explanation: The element or attribute specified in the

path expression is missing from the XML document.

User Response: Verify that the specified path is

correct.

DXXG000E The file name <file_name> is invalid.

Explanation: An invalid file name was specified.

User Response: Specify a correct file name and try

again.

DXXG001E An internal error occurred in build

<build_ID>, file <file_name>, and line

<line_number>.

Explanation: XML Extender encountered an internal

error.

User Response: Contact your Software Service

Provider. When reporting the error, be sure to include

all the messages, the trace file and how to reproduce

the error.

Chapter 14. Troubleshooting 285

DXXG002E The system is out of memory.

Explanation: The XML Extender was unable to

allocate memory from the operating system.

User Response: Close some applications and try

again. If the problem persists, refer to your operating

system documentation for assistance. Some operating

systems might require that you reboot the system to

correct the problem.

DXXG004E Invalid null parameter.

Explanation: A null value for a required parameter

was passed to an XML stored procedure.

User Response: Check all required parameters in the

argument list for the stored procedure call.

DXXG005E Parameter not supported.

Explanation: This parameter is not supported in this

release, will be supported in the future release.

User Response: Set this parameter to NULL.

DXXG006E Internal Error CLISTATE=<clistate>,

RC=<cli_rc>, build <build_ID>, file

<file_name>, line <line_number>

CLIMSG=<CLI_msg>.

Explanation: XML Extender encountered an internal

error while using CLI.

User Response: Contact your Software Service

Provider. Potentially this error can be caused by

incorrect user input. When reporting the error, be sure

to include all output messages, trace log, and how to

reproduce the problem. Where possible, send any

DADs, XML documents, and table definitions which

apply.

DXXG007E Locale <locale> is inconsistent with DB2

UDB code page <code_page>.

Explanation: The server operating system locale is

inconsistent with DB2 UDB code page.

User Response: Correct the server operating system

locale and restart DB2.

DXXG008E Locale <locale> is not supported.

Explanation: The server operating system locale can

not be found in the code page table.

User Response: Correct the server operating system

locale and restart DB2.

DXXG017E The limit for XML_Extender_constant has

been exceeded in build build_ID, file

file_name, and line line_number.

Explanation: Check the XML Extender Administration

and Programming Guide to see whether your

application has exceeded a value in the limits table. If

no limit has been exceeded, contact your Software

Service Provider. When reporting the error, include all

output messages, trace files, and information on how to

reproduce the problem such as input DADs, XML

documents, and table definitions.

User Response: Correct the server operating system

locale and restart DB2.

DXXM001W A DB2 UDB error occurred.

Explanation: DB2 encountered the specified error.

User Response: See any accompanying messages for

futher explanation and refer to DB2 UDB messages and

codes documentation for your operating system.

DXXQ000E <Element> is missing from the DAD file.

Explanation: A mandatory element is missing from

the document access definition (DAD) file.

User Response: Add the missing element to the DAD

file.

DXXQ001E Invalid SQL statement for XML

generation.

Explanation: The SQL statement in the document

access definition (DAD) or the one that overrides it is

not valid. A SELECT statement is required for

generating XML documents.

User Response: Correct the SQL statement.

DXXQ002E Cannot generate storage space to hold

XML documents.

Explanation: The system is running out of space in

memory or disk. There is no space to contain the

resulting XML documents.

User Response: Limit the number of documents to be

generated. Reduce the size of each documents by

removing some unnecessary element and attribute

nodes from the document access definition (DAD) file.

DXXQ003W Result exceeds maximum.

Explanation: The user-defined SQL query generates

more XML documents than the specified maximum.

Only the specified number of documents are returned.

User Response: No action is required. If all

documents are needed, specify zero as the maximum

number of documents.

286 XML Extender Administration and Programming

DXXQ004E The column <column_name> is not in the

result of the query.

Explanation: The specified column is not one of the

columns in the result of the SQL query.

User Response: Change the specified column name in

the document access definition (DAD) file to make it

one of the columns in the result of the SQL query.

Alternatively, change the SQL query so that it has the

specified column in its result.

DXXQ005E Wrong relational mapping. The element

<element_name> is at a lower level than

its child column <column_name>.

Explanation: The mapping of the SQL query to XML

is incorrect.

User Response: Make sure that the columns in the

result of the SQL query are in a top-down order of the

relational hierarchy. Also make sure that there is a

single-column candidate key to begin each level. If such

a key is not available in a table, the query should

generate one for that table using a table expression and

the DB2 UDB built-in function generate_unique().

DXXQ006E An attribute_node element has no name.

Explanation: An attribute_node element in the

document access definition (DAD) file does not have a

name attribute.

User Response: Ensure that every attribute_node has

a name in the DAD file.

DXXQ007E The attribute_node <attribute_name> has

no column element or RDB_node.

Explanation: The attribute_node element in the

document access definition (DAD) does not have a

column element or RDB_node.

User Response: Ensure that every attribute_node has

a column element or RDB_node in the DAD.

DXXQ008E A text_node element has no column

element.

Explanation: A text_node element in the document

access definition (DAD) file does not have a column

element.

User Response: Ensure that every text_node has a

column element in the DAD.

DXXQ009E Result table <table_name> does not exist.

Explanation: The specified result table could not be

found in the system catalog.

User Response: Create the result table before calling

the stored procedure.

DXXQ010E RDB_node of <node_name> does not

have a table in the DAD file.

Explanation: The RDB_node of the attribute_node or

text_node must have a table.

User Response: Specify the table of RDB_node for

attribute_node or text_node in the document access

definition (DAD) file.

DXXQ011E RDB_node element of <node_name> does

not have a column in the DAD file.

Explanation: The RDB_node of the attribute_node or

text_node must have a column.

User Response: Specify the column of RDB_node for

attribute_node or text_node in the document access

definition (DAD) file.

DXXQ012E Errors occurred in DAD.

Explanation: XML Extender could not find the

expected element while processing the DAD.

User Response: Check that the DAD is a valid XML

document and contains all the elements required by the

DAD DTD. Consult the XML Extender publication for

the DAD DTD.

DXXQ013E The table or column element does not

have a name in the DAD file.

Explanation: The element table or column must have

a name in the document access definition (DAD) file.

User Response: Specify the name of table or column

element in the DAD.

DXXQ014E An element_node element has no name.

Explanation: An element_node element in the

document access definition (DAD) file does not have a

name attribute.

User Response: Ensure that every element_node

element has a name in the DAD file.

DXXQ015E The condition format is invalid.

Explanation: The condition in the condition element in

the document access definition (DAD) has an invalid

format.

User Response: Ensure that the format of the

condition is valid.

DXXQ016E The table name in this RDB_node is not

defined in the top element of the DAD

file.

Explanation: All tables must be defined in the

RDB_node of the top element in the document access

Chapter 14. Troubleshooting 287

definition (DAD) file. Sub-element tables must match

the tables defined in the top element. The table name in

this RDB_node is not in the top element.

User Response: Ensure that the table of the RDB node

is defined in the top element of the DAD file.

DXXQ017E The column in the result table

<table_name> is too small.

Explanation: An XML document generated by the

XML Extender is too large to fit into the column of the

result table.

User Response: Drop the result table. Create another

result table with a bigger column. Rerun the stored

procedure.

DXXQ018E The ORDER BY clause is missing from

the SQL statement.

Explanation: The ORDER BY clause is missing from

the SQL statement in a document access definition

(DAD) file that maps SQL to XML.

User Response: Edit the DAD file. Add an ORDER BY

clause that contains the entity-identifying columns.

DXXQ019E The element objids has no column

element in the DAD file.

Explanation: The objids element does not have a

column element in the document access definition

(DAD) file that maps SQL to XML.

User Response: Edit the DAD file. Add the key

columns as sub-elements of the element objids.

DXXQ020I XML successfully generated.

Explanation: The requested XML documents have

been successfully generated from the database.

User Response: No action is required.

DXXQ021E Table <table_name> does not have

column <column_name>.

Explanation: The table does not have the specified

column in the database.

User Response: Specify another column name in DAD

or add the specified column into the table database.

DXXQ022E Column <column_name> of <table_name>

should have type <type_name>.

Explanation: The type of the column is wrong.

User Response: Correct the type of the column in the

document access definition (DAD).

DXXQ023E Column <column_name> of <table_name>

cannot be longer than <length>.

Explanation: The length defined for the column in the

DAD is too long.

User Response: Correct the column length in the

document access definition (DAD).

DXXQ024E Can not create table <table_name>.

Explanation: The specified table can not be created.

User Response: Ensure that the user ID creating the

table has the necessary authority to create a table in the

database.

DXXQ025I XML decomposed successfully.

Explanation: An XML document has been

decomposed and stored in a collection successfully.

User Response: No action is required.

DXXQ026E XML data <xml_name> is too large to fit

in column <column_name>.

Explanation: The specified piece of data from an XML

document is too large to fit into the specified column.

User Response: Increase the length of the column

using the ALTER TABLE statement or reduce the size

of the data by editing the XML document.

DXXQ028E Cannot find the collection

<collection_name> in the XML_USAGE

table.

Explanation: A record for the collection cannot be

found in the XML_USAGE table.

User Response: Verify that you have enabled the

collection.

DXXQ029E Cannot find the DAD in XML_USAGE

table for the collection <collection_name>.

Explanation: A DAD record for the collection cannot

be found in the XML_USAGE table.

User Response: Ensure that you have enabled the

collection correctly.

DXXQ030E Wrong XML override syntax.

Explanation: The XML_override value is specified

incorrectly in the stored procedure.

User Response: Ensure that the syntax of

XML_override is correct.

288 XML Extender Administration and Programming

DXXQ031E Table name cannot be longer than

maximum length allowed by DB2.

Explanation: The table name specified by the

condition element in the DAD is too long.

User Response: Correct the length of the table name

in document access definition (DAD).

DXXQ032E Column name cannot be longer than

maximum length allowed by DB2.

Explanation: The column name specified by the

condition element in the DAD is too long.

User Response: Correct the length of the column

name in the document access definition (DAD).

DXXQ033E Invalid identifier starting at <identifier>

Explanation: The string is not a valid DB2 UDB SQL

identifier.

User Response: Correct the string in the DAD to

conform to the rules for DB2 UDB SQL identifiers.

DXXQ034E Invalid condition element in top

RDB_node of DAD: <condition>

Explanation: The condition element must be a valid

WHERE clause consisting of join conditions connected

by the conjunction AND.

User Response: See the XML Extender documentation

for the correct syntax of the join condition in a DAD.

DXXQ035E Invalid join condition in top RDB_node

of DAD: <condition>

Explanation: Column names in the condition element

of the top RDB_node must be qualified with the table

name if the DAD specifies multiple tables.

User Response: See the XML Extender documentation

for the correct syntax of the join condition in a DAD.

DXXQ036E A Schema name specified under a DAD

condition tag is longer than allowed.

Explanation: An error was detected while parsing text

under a condition tag within the DAD. The condition

text contains an id qualified by a schema name that is

too long.

User Response: Correct the text of the condition tags

in document access definition (DAD).

DXXQ037E Cannot generate <element> with multiple

occurrences.

Explanation: The element node and its descendents

have no mapping to database, but its multi_occurrence

equals YES.

User Response: Correct the DAD by either setting the

multi_occurrence to NO or create a RDB_node in one

of its descendents.

DXXQ038E The SQL statement is too long:

SQL_statement

Explanation: The SQL statement specified in the

<SQL_stmt> element of DAD exceeds the allowed

number of bytes.

User Response: Reduce the length of the SQL

statement to less than or equal to 32765 bytes for

Windows and UNIX, or 16380 bytes for OS/390 and

iSeries.

DXXQ039E Too many columns specified for a table

in the DAD file.

Explanation: A DAD file used for decomposition or

RDB composition can have a maximum of 100

text_node and attribute_node elements that specify

unique columns within the same table.

User Response: Reduce the total number of text_node

and attribute_node elements that refer to unique

columns within the same table 100 or less.

DXXQ040E The element name <element_name> in the

DAD file is invalid.

Explanation: The specified element name in the

document access definition (DAD) file is wrong.

User Response: Ensure that the element name is

typed correctly in the DAD file. See the DTD for the

DAD file.

DXXQ041W XML document successfully generated.

One or more override paths specified is

invalid and ignored.

Explanation: Specify only one override path.

User Response: Ensure that the element name is

typed correctly in the DAD file. See the DTD for the

DAD file.

DXXQ043E Attribute <attr_name> not found under

element <elem_name>.

Explanation: The attribute <attr_name> was not

present in element <elem_name> or one of its child

elements.

User Response: Ensure the attribute appears in the

XML document everywhere that the DAD requires it.

Chapter 14. Troubleshooting 289

DXXQ044E Element <elem_name> does not have an

ancestor element<ancestor>.

Explanation: According to the DAD, <ancestor> is an

ancestor element of <elem_name> . In the XML

document, one or more element <elem_name> does not

have such an ancestor.

User Response: Ensure that the nesting of elements in

the XML document conforms to what is specified in the

corresponding DAD.

DXXQ045E Subtree under element <elem_name>

contains multiple attributes

named<attrib_name>.

Explanation: A subtree under <elem_name> in the

XML document contains multiple instances of

attribute<attrib_name> , which according to the DAD, is

to be decomposed into the same row. Elements or

attributes that are to be decomposed must have unique

names.

User Response: Ensure that the element or attribute in

the subtree has a unique name.

DXXQ046W The DTD ID was not found in the

DAD.

Explanation: In the DAD, VALIDATION is set to YES,

but the DTDID element is not specified. No validation

check is performed.

User Response: No action is required. If validation is

needed, specify the DTDID element in the DAD file.

DXXQ047E Parser error on line <mv>

linenumber</mv> column colnumber: msg

Explanation: The parser could not parse the document

because of the reported error.

User Response: Correct the error in the document,

consulting the XML specifications if necessary.

DXXQ048E Internal error - see trace file.

Explanation: The stylesheet processor returned an

internal error. The XML document or the stylesheet

might not vaild.

User Response: Ensure the XML document and the

stylesheet are valid.

DXXQ049E The output file already exists.

Explanation: The specified output file already exists in

this directory.

User Response: Change the output path or file name

for the output document to a unique name or delete

the existing file.

DXXQ050E Unable to create a unique file name.

Explanation: The UDF was unable to create a unique

file name for the output document in the specified

directory because it does not have access, all file names

that can be generated are in use or directory might not

exist.

User Response: Ensure that the UDF has access to the

specified directory, change to a directory with available

file names.

DXXQ051E No input or output data.

Explanation: One or more input or output parameters

have no valid value.

User Response: Check the statement to see if required

parameters are missing.

DXXQ052E An error occurred while accessing the

DB2XML.XML_USAGE table.

Explanation: Either the database has not been enabled

or the table DB2XML.XML_USAGE has been dropped.

User Response: Ensure that the database has been

enabled and the table DB2XML.XML_USAGE is

accessible.

DXXQ053E An SQL statement failed : msg

Explanation: An SQL statement generated during

XML Extender processing failed to

execute.DB2XML.XML_USAGE has been dropped.

User Response: Examine the trace for more details. If

you cannot correct the error condition, contact your

softwaresService provider. When reporting the error, be

sure to include all the messages, the trace file and how

to reproduce the error.

DXXQ054E Invalid input parameter: param

Explanation: The specified input parameter to a stored

procedure or UDF is invalid.

User Response: Check the signature of the relevant

stored procedure or UDF, and ensure the actual input

parameter is correct.

DXXQ055E ICU error: uerror

Explanation: ICU error encountered during conversion

operation.

User Response: Report the error to your software

service provider. Include trace file, error message, and

instructions to reproduce the error.

290 XML Extender Administration and Programming

DXXQ056E Element/attribute xmlname cannot be

mapped to the column designated as

part of the foreign key (column column

in table table).

Explanation: The specified element/attribute cannot

be mapped to a column that is specified as part of a

foreign key. Data values for foreign keys are

determined by that of the primary keys; a mapping of

the specified element/attribute in the xml document to

a table and column is not necessary.

User Response: Remove the RDB_node mapping to

the specified column and table in the DAD.

DXXQ057E The schemabindings and dtdid tags

cannot exist together in the DAD file.

Explanation: The schemabindings and dtdid tags

cannot exist together in the DAD file.

User Response: Check that either the schemabindings

tag or the dtdid tag exists in the DAD file, but not

both.

DXXQ058E The nonamespacelocation tag inside the

schemabindings tag is missing in the

DAD file.

Explanation: The nonamespacelocation tag inside the

schemabindings tag is missing in the DAD file.

User Response: Add the nonamespacelocation tag to

the schemabindings tag.

DXXQ059E The doctype tag cannot be located

inside the XCollection tag in the DAD

for schema validation.

Explanation: The doctype tag cannot be located inside

the XCollection tag in the DAD for schema validation.

User Response: Remove the doctype tag inside the

Xcollection tag for schema validation.

DXXQ060E Attempt to find SCHEMA ID schemaid

failed.

Explanation: The XML Extender could not find the

SCHEMA ID while attempting to enable the column.

The SCHEMA ID corresponds to the value of the

location attribute of the nonamespacelocation tag which

is inside the schemabindings tag in the DAD file.

User Response: Check that the correct value for the

SCHEMA ID is specified in the DAD file.

DXXQ061E The format of the string is invalid.

Explanation: The format of the string representation is

invalid. If the string is a date, time, or timestamp value,

the syntax does not conform to its data type.

User Response: Check that the format of the date,

time, or timestamp value conforms to the format for its

data type.

DXXQ062E No rows of result set for table are left to

produce a XML value for element.

Explanation: This error condition is usually caused by

a missing multi_occurrence = YES specification on the

parent element_node of the given element or attribute.

User Response: Check the DAD that the value of

multi_occurrence on the parent element_node correctly

reflects the multiplicity of child element_nodes.

DXXQ063E The multi_occurrence attribute value on

elementname in the DAD file is invalid.

Explanation: The value of the multi_occurrence

attribute on the specified element_node in the

document access definition (DAD) file is wrong or

missing. The value must be ’yes’ or ’no’, case

insensitive.

User Response: Ensure that the multi_occurrence

attribute is specified correctly in the DAD file.

DXXQ064E Column column not found in foreign

table table.

Explanation: A key column specified in the join

condition was not mapped to any element or attribute

node.

User Response: Check to make sure the join condition

specified in the DAD file is correct, and all key

columns are mapped to element or attribute nodes.

DXXQ065I All triggers relating to XML enabled

columns have been successfully

regenerated.

Explanation: This is an informational message only.

User Response: No action required.

DXXQ066E The primary key for table tablename does

not exist.

Explanation: XML Extender could not determine the

primary key for table tablename. Check that the primary

key for the table was not dropped after the column was

enabled for XML.

User Response: Alter the table to add the primary key

specified as the ROOT ID when the column was

enabled for XML.

Chapter 14. Troubleshooting 291

DXXQ067E Attempt to action failed.

Explanation: While attempting to action, a SQL error

occurred.

User Response: Contact your Software Service

Provider. When reporting the error, be sure to include

the XML Extender trace file.

DXXQ068E Cannot set current SQLID to [userid].

SQLCODE = [sqlcode].

Explanation: While attempting to set current sqlid to a

secondary authorization id, a SQL error occurred.

User Response: Check that you are specifying a valid

secondary authorization id and that you have

authorization for the id.

292 XML Extender Administration and Programming

Appendix A. Samples

 This appendix shows the sample objects that are used with examples in this book.

v “XML DTD sample”

v “XML document sample: getstart.xml”

v “Document access definition files” on page 294

– “Sample DAD file: XML column” on page 294

– “Sample DAD file: XML collection: SQL mapping” on page 296

– “Sample DAD file: XML: RDB_node mapping” on page 297

XML DTD sample

The following DTD is used for the getstart.xml document that is referenced

throughout this book.

XML document sample: getstart.xml

The following XML document, getstart.xml, is the sample XML document that is

used in examples throughout this book. It contains XML tags to form a purchase

order.

<!xml encoding="US-ASCII"?>

<!ELEMENT Order (Customer, Part+)>

<!ATTLIST Order key CDATA #REQUIRED>

<!ELEMENT Customer (Name, Email)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Email (#PCDATA)>

<!ELEMENT Part (key, Quantity, ExtendedPrice, Tax, Shipment+)>

<!ELEMENT key (#PCDATA)>

<!ELEMENT Quantity (#PCDATA)>

<!ELEMENT ExtendedPrice (#PCDATA)>

<!ELEMENT Tax (#PCDATA)>

<!ATTLIST Part color CDATA #REQUIRED>

<!ELEMENT Shipment (ShipDate, ShipMode)>

<!ELEMENT ShipDate (#PCDATA)>

<!ELEMENT ShipMode (#PCDATA)>

Figure 15. Sample XML DTD: getstart.dtd

© Copyright IBM Corp. 1999, 2004 293

Document access definition files

The following sections contain document access definition (DAD) files that map

XML data to DB2 UDB relational tables, using either XML column or XML

collection access modes.

v “Sample DAD file: XML column”

v “Sample DAD file: XML collection: SQL mapping” on page 296 shows a DAD

file for an XML collection using SQL mapping.

v “Sample DAD file: XML: RDB_node mapping” on page 297 show a DAD for an

XML collection that uses RDB_node mapping.

Sample DAD file: XML column

This DAD file contains the mapping for an XML column, and it definines the table,

side tables, and columns that are to contain the XML data.

<?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd">

<Order key="1">

 <Customer>

 <Name>American Motors</Name>

 <Email>parts@am.com</Email>

 </Customer>

 <Part color="black ">

 <key>68</key>

 <Quantity>36</Quantity>

 <ExtendedPrice>34850.16</ExtendedPrice>

 <Tax>6.000000e-02</Tax>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>BOAT </ShipMode>

 </Shipment>

 <Shipment>

 <ShipDate>1998-08-19</ShipDate>

 <ShipMode>AIR </ShipMode>

 </Shipment>

 </Part>

 <Part color="red ">

 <key>128</key>

 <Quantity>28</Quantity>

 <ExtendedPrice>38000.00</ExtendedPrice>

 <Tax>7.000000e-02</Tax>

 <Shipment>

 <ShipDate>1998-12-30</ShipDate>

 <ShipMode>TRUCK </ShipMode>

 </Shipment>

 </Part>

</Order>

Figure 16. Sample XML document: getstart.xml

294 XML Extender Administration and Programming

<?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

 <dtdid> "dxx_install/samples/db2xml/dtd/getstart.dtd"

 </dtdid>

 <validation>YES</validation>

 <Xcolumn>

 <table name="order_side_tab">

 <column name="order_key"

 type="integer"

 path="/Order/@key"

 multi_occurrence="NO"/>

 <column name="customer"

 type="varchar(50)"

 path="/Order/Customer/Name"

 multi_occurrence="NO"/>

 </table>

 <table name="part_side_tab">

 <column name="price"

 type="decimal(10,2)"

 path="/Order/Part/ExtendedPrice"

 multi_occurrence="YES"/>

 </table>

 <table name="ship_side_tab">

 <column name="date"

 type="DATE"

 path="/Order/Part/Shipment/ShipDate"

 multi_occurrence="YES"/>

 </table>

 </Xcolumn>

</DAD>

Figure 17. Sample DAD file for an XML column: getstart_xcolumn.dad

Appendix A. Samples 295

Sample DAD file: XML collection: SQL mapping

This DAD file contains an SQL statement that specifies the DB2 UDB tables,

columns, and conditions that are to contain the XML data.

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt>SELECT o.order_key, customer_name, customer_email, p.part_key, color,

 quantity, price, tax, ship_id, date, mode from order_tab o, part_tab p,

 table(select db2xml.generate_unique()

 as ship_id, date, mode, part_key from ship_tab) s

 p.price > 20000 and

 p.order_key = o.order_key and

 s.part_key = p.part_key

 ORDER BY order_key, part_key, ship_id</SQL_stmt>

<prolog>?xml version="1.0"?</prolog>

<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd

"</doctype>

Figure 18. Sample DAD file for an XML collection using SQL mapping: order_sql.dad (Part 1

of 2)

296 XML Extender Administration and Programming

Sample DAD file: XML: RDB_node mapping

This DAD file uses <RDB_node> elements to define the DB2 UDB tables, columns,

and conditions that are to contain XML data.

<?xml version="1.0"?>

<!DOCTYPE DAD SYSTEM "SQLLIB/samples/db2xml/dtd/dad.dtd>

<DAD>

 <dtdid>E:\dtd\lineItem.dtd</dtdid>

 <validation>YES</validation>

 <Xcollection>

 <prolog>?xml version="1.0"?</prolog>

 <doctype>!DOCTYPE Order SYSTEM

 "SQLLIB/samples/db2xml/dtd/getstart.dtd"</doctype>

 <root_node>

 <element_node name="Order">

 <RDB_node>

 <table name="order_tab"/>

<root_node>

<element_node name="Order">

 <attribute_node name="key">

 <column name="order_key"/>

 </attribute_node>

 <element_node name="Customer">

 <element_node name="Name">

 <text_node><column name="customer_name"/></text_node>

 </element_node>

 <element_node name="Email">

 <text_node><column name="customer_email"/></text_node>

 </element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="color">

 <column name="color"/>

 </attribute_node>

 <element_node name="key">

 <text_node><column name="part_key"/></text_node>

 </element_node>

 <element_node name="Quantity">

 <text_node><column name="quantity"/></text_node>

 </element_node>

 <element_node name="ExtendedPrice">

 <text_node><column name="price"/></text_node>

 </element_node>

 <element_node name="Tax">

 <text_node><column name="tax"/></text_node>

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 <text_node><column name="date"/></text_node>

 </element_node>

 <element_node name="ShipMode">

 <text_node><column name="mode"/></text_node>

 </element_node>

 </element_node>

 </element_node>

</element_node>

</root_node>

</Xcollection>

</DAD>

Figure 18. Sample DAD file for an XML collection using SQL mapping: order_sql.dad (Part 2

of 2)

Appendix A. Samples 297

<table name="part_tab"/>

 <table name="ship_tab"/>

 <condition>order_tab.order_key=part_tab.order_key AND

 part_tab.part_key=ship_tab.part_key </condition>

 </RDB_node>

 <attribute_node name="Key">

 <RDB_node>

 <table name="order_tab"/>

 <column name="order_key"/>

 </RDB_node>

 </attribute_node>

 <element_node name="Customer">

 <element_node name="Name">

 <text_node>

 <RDB_node>

 <table name="order_tab"/>

 <column name="customer_name"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="Email">

 <text_node>

 <RDB_node>

 <table name="order_tab"/>

 <column name="customer_email"/>

 </RDB_node>

 </text_node>

 </element_node>

 </element_node>

 <element_node name="Part">

 <attribute_node name="Key">

 <RDB_node>

 <table name="part_tab"/>

 <column name="part_key"/>

 </RDB_node>

 </attribute_node>

 <element_node name="ExtendedPrice">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="price"/>

 <condition>price > 2500.00</condition>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="Tax">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="tax"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="Quantity">

 <text_node>

 <RDB_node>

 <table name="part_tab"/>

 <column name="qty"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="Shipment" multi_occurrence="YES">

 <element_node name="ShipDate">

 <text_node>

 <RDB_node>

298 XML Extender Administration and Programming

<table name="ship_tab"/>

 <column name="date"/>

 <condition>date > ’1966-01-01’</condition>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="ShipMode">

 <text_node>

 <RDB_node>

 <table name="ship_tab"/>

 <column name="mode"/>

 </RDB_node>

 </text_node>

 </element_node>

 <element_node name="Comment">

 <text_node>

 <RDB_node>

 <table name="ship_tab"/>

 <column name="comment"/>

 </RDB_node>

 </text_node>

 </element_node>

 </element_node> <!-- end of element Shipment-->

 </element_node> <!-- end of element Part -->

 </element_node> <!-- end of element Order -->

</root_node>

</Xcollection>

</DAD>

Appendix A. Samples 299

300 XML Extender Administration and Programming

Appendix B. Code page considerations

 XML documents and other related files must be encoded properly for each client

or server that accesses the files. The XML Extender makes some assumptions when

processing a file, you need to understand how it handles code page conversions.

The primary considerations are:

v Ensuring that the actual code page of the client retrieving an XML document

from DB2 UDB matches the encoding of the document.

v Ensuring that, when the document is processed by an XML parser, the encoding

declaration of the XML document is also consistent with the document’s actual

encoding.

v Determining how parsers and other tools handle line endings and determining

how to present files so that they are processed.

The following topics describe the issues for these considerations, how you can

prepare for possible problems, and how the XML Extender and DB2 UDB support

code pages when documents are passed from client to server, and to the database.

Terminology for XML code pages

The following terms are used in the topics about XML code pages:

document encoding

The code page of an XML document.

document encoding declaration

The name of the code page specified in the XML declaration. For example,

the following encoding declaration specifies ibm-1047:

<?xml version="1.0" encoding="ibm-1047"?>

consistent document

A document in which the code page matches the encoding declaration.

inconsistent document

A document in which the code page does not match the encoding

declaration.

client code page

The application code page. The default client code page is the value of the

operating system locale on a Windows or UNIX client.

server code page, or server operating system locale code page

The operating system locale of the HFS file system on USS, that is in the

same OS/390 system as the XML-enabled database. The XML Extender

uses the nl_langinfo environment option to determine the value of the

server code page.

database code page

The encoding of the stored data, determined at database create time. This

value defaults to the server operating system locale.

© Copyright IBM Corp. 1999, 2004 301

DB2 and XML Extender code page assumptions

When DB2 UDB sends or receives an XML document, it does not check the

encoding declaration. Rather, it checks the code page for the client to see if it

matches the database code page. If they are different, DB2 UDB converts the data

in the XML document to match the code page of:

v The database, when importing the document, or a document fragment, into a

database table.

v The database, when decomposing a document into one or more database tables.

v The client, when exporting the document from the database and presenting the

document to the client.

v The server, when processing a file with a UDF that returns data in a file on the

server’s file system.

Assumptions for importing an XML document

When an XML document is imported into the database, it is generally imported as

an XML document to be stored in an XML column, or for decomposition for an

XML collection, where the element and attribute contents will be saved as DB2

UDB data. When a document is imported, DB2 UDB converts the document

encoding to that of the database. DB2 UDB assumes that the document is in the

code page specified in the “Source code page” column in the table below. Table 95

summarizes the conversions that DB2 UDB makes when importing an XML

document.

 Table 95. Using UDFs and stored procedures when the XML file is imported into the

database

Task This is the

source code

page for

conversion

This is the

target code

page for

conversion

Comments

Inserting DTD file into

DTD_REF table

Client code

page

Database code

page

Enabling a column or

enabling a collection

with stored procedures,

or using administration

commands that import

DAD files

Client code

page (the code

page used to

bind

DXXADMIN

during

installation),

when enabling

in USS.

Database code

page

Using user-defined

functions:

v XMLVarchar

FromFile()

v XMLCLOB FromFile()

v Content(): retrieve

from XMLFILE to a

CLOB

Server code

page

Database code

page

The database code page is

converted to the client code page

when the data is presented to

the client

302 XML Extender Administration and Programming

Table 95. Using UDFs and stored procedures when the XML file is imported into the

database (continued)

Task This is the

source code

page for

conversion

This is the

target code

page for

conversion

Comments

Using stored procedures

for decomposition

Client code

page

Database code

page

v Document to be decomposed

is assumed to be in client code

page. Data from

decomposition is stored in

tables in database code page

v Use the CCSID option for

DAD and XML files when the

calling application runs in

USS.

Assumptions for exporting an XML document

When an XML document is exported from the database, it is exported based on a

client request to present one of the following objects:

v An XML document from an XML column

v The query results of XML documents in an XML column

v A composed XML document from an XML collection

When a document is exported, DB2 UDB converts the document encoding to that

of the client or server, depending on where the request originated and where the

data is to be presented. Table 96 summarizes the conversions that DB2 UDB makes

when exporting an XML document.

 Table 96. Using UDFs and stored procedures when the XML file is exported from the

database

Task DB2 converts the ... Comments

Using user-defined functions:

v XMLFileFromVarchar()

v XMLFileFromCLOB()

v Content(): retrieve from

XMLVARCHAR to an

external server file

Database code page to the

server code page

Composing XML documents

with a stored procedure that

are stored in a result table,

which can be queried and

exported.

Database code page to the

client code page when the

result set is presented to the

client

v When composing

documents, XML Extender

copies the encoding

declaration specified by the

tag in the DAD, to the

newly created document. It

should match the client

code page when presented.

v Use the CCSID option for

DAD files when the calling

application runs in USS.

Appendix B. Code page considerations 303

Encoding declaration considerations for XML Extender

The encoding declaration specifies the code page of the XML document’s encoding

and appears on the XML declaration statement. When using XML Extender, it is

important to ensure that the encoding of the document matches the code page of

the client or the server, depending on where the file is located.

Legal encoding declarations

You can use any encoding declaration in XML documents, within some guidelines.

In this section, these guidelines are defined, along with the supported encoding

declarations.

If you use the encodings listed in Table 97, your application can be ported between

IBM operating systems. If you use other encodings, your data is less likely to be

portable.

For all operating systems, the following encoding declarations are supported. The

following list describes the meaning of each column:

v Encoding specifies the encoding string to be used in the XML declaration.

v Category shows the operating system on which DB2 UDB supports the given

code page.

v Code page shows the IBM-defined code page associated with the given

encoding

 Table 97. Encoding declarations supported by XML Extender

Category Encoding Code page

Unicode UTF-8 1208

UTF-16 1200

EBCDIC ibm-037 37

ibm-273 273

ibm-277 277

ibm-278 278

ibm-280 280

ibm-284 284

ibm-297 297

ibm-500 500

ibm-1047 1047

ibm-1140 1140

ASCII iso-8859-1 819

ibm-1252 1252

iso-8859-2 912

iso-8859-5 915

iso-8859-6 1089

iso-8859-7 813

iso-8859-8 916

iso-8859-9 920

304 XML Extender Administration and Programming

The encoding string must be compatible with the code page of the document’s

destination. If a document is being returned from a server to a client, then its

encoding string must be compatible with the client’s code page. See “Consistent

encodings and encoding declarations” for the consequences of incompatible

encodings. See the following Web address for a list of code pages supported by the

XML parser used by XML Extender:

http://www.ibm.com/software/data/db2/extenders/xmlext/moreinfo/encoding.html

Consistent encodings and encoding declarations

When an XML document is processed or exchanged with another system, it is

important that the encoding declaration corresponds to the actual encoding of the

document. Ensuring that the encoding of a document is consistent with the client

is important because XML tools, like parsers, generate an error for an entity that

includes an encoding declaration other than that named in the declaration.

Figure 19 shows that clients have consistent code pages with the document

encoding and declared encoding.

The consequences of having different code pages are the following possible

situations:

v A conversion in which data is lost might occur, particularly if the source code

page is Unicode and the target code page is not Unicode. Unicode contains the

full set of characters. If a file is converted from UTF-8 to a code page that does

not support all the characters used in the document, then data might be lost

during the conversion.

v The declared encoding of the XML document might no longer be consistent with

the actual document encoding, if the document is retrieved by a client with a

different code page than the declared encoding of the document.

Figure 19. Clients have matching code pages

Appendix B. Code page considerations 305

Figure 20 shows an environment in which the code pages of the clients are

inconsistent.

Client 2 receives the document in EUC, but the document will have an encoding

declaration of ibm-1252.

Consistent encodings in USS

When running applications in USS, there are two considerations:

v When you enable an XML column or collection, and specify a DAD file that is

stored in HFS, bind the DXXADM package with the ENCODING option and

specify the actual code page of the DAD file. The bind step for DXXADM is

included in the DXXGPREP JCL job. For example, if the DAD file has a code

page of 1047, specify this value on the ENCODING option:

BIND PACKAGE (DB2XML) MEMBER(DXXADM) ENCODING(1047);

v When DAD files stored in HFS are used in a calling application, declare a host

variable in the calling program with the coded character set identifier (CCSID) of

the actual code page of the DAD file. If the file is created in HFS, the code page

is that of HFS. If the file has been imported into HFS in binary mode, the code

page might be different. This declaration ensures that DB2 UDB converts the

DAD code page, to the database code page. For example, if a DAD file is in

1047, use the following variable declaration:

EXEC SQL DECLARE :dadobj VARIABLE CCSID 1047;

v When XML files stored in HFS are used in a calling application for

decomposition, declare a host variable in the calling program with the CCSID of

the actual code page of the XML file. If the file is created in HFS, the code page

is that of HFS. If the file has been imported into HFS in binary mode, the code

page might be different. This declaration ensures that DB2 UDB converts the

Figure 20. Clients have mismatching code pages

306 XML Extender Administration and Programming

XML file code page, to the database code page. For example, if a DAD file is in

1047, use the following variable declaration:

EXEC SQL DECLARE :xmlobj VARIABLE CCSID 1047;

Declaring an encoding

The default value of the encoding declaration is UTF-8, and the absence of an

encoding declaration means the document is in UTF-8.

To declare an encoding value:

In the XML document declaration specify the encoding declaration with the name

of the code page of the client. For example:

<?xml version="1.0" encoding="ibm-1047" ?>

Conversion scenarios

The XML Extender processes XML documents when:

v Storing and retrieving XML column data, using the XML column storage and

access method

v Composing and decomposing XML documents

Documents undergo code page conversion when passed from a client or server, to

a database. Inconsistencies or damage of XML documents is most likely to occur

during conversions from code pages of the client, server, and database. When

choosing the encoding declaration of the document, as well as planning what

clients and servers can import or export documents from the database, consider the

conversions described in the above tables, and the scenarios described below.

The following scenarios describe common conversion scenarios that can occur:

Scenario 1: This scenario is a configuration with consistent encodings, no DB2

UDB conversion, and a document imported from the server. The document

encoding declaration is ibm-1047, the server is ibm-1047, and the database is

ibm-1047. DB2 UDB does not need to convert the document because the server

code page and database code page are identical. The encoding and declaration are

consistent.

1. The document is imported into DB2 UDB using the XMLClobfromFile UDF.

2. The document is extracted to the server.

Scenario 2: This scenario is a configuration with consistent encodings, DB2 UDB

conversion, and a document imported from server and exported to client. The

document encoding and declaration is ibm-1047 the client and server code pages

are ibm-1047, and the database code pages are ibm-500.

1. The document is imported into DB2 UDB using XMLClobfromfile UDF from

the server. DB2 converts the document from ibm-1047 and stores it in ibm-500.

The encoding declaration and encoding are inconsistent in the database.

2. A client using ibm-1047 requests the document for presentation at the Web

browser. DB2 UDB converts the document to ibm-1047, the client’s code page.

The document encoding and the declaration are now consistent at the client.

Scenario 3: This scenario is a configuration with inconsistent encodings, DB2 UDB

conversion, a document imported from the server and exported to a client. The

document encoding declaration is for the incoming document. The server code

page is ibm-1047 and the client and database are ibm-500.

Appendix B. Code page considerations 307

1. The document is imported into the database using a storage UDF. DB2 UDB

converts the document to ibm-500 from ibm-1047. The encoding and

declaration are inconsistent.

2. A client with a ibm-500 code page requests the document for presentation at a

Web browser. DB2 does not convert because the client and the database code

pages are the same. The document encoding and declaration are inconsistent

because the declaration is ibm-1047 and the encoding is ibm-500. The document

cannot be processed by an XML parser or other XML processing tools.

Recommendations for preventing inconsistent XML documents

The above sections have discussed how an XML document can have an

inconsistent encoding, that is, the encoding declaration conflicts with the

document’s encoding. Inconsistent encodings can cause the loss of data and or

unusable XML documents.

Use one of the following recommendations for ensuring that the XML document

encoding is consistent with the client code page, before handing the document to

an XML processor, such as a parser:

v When exporting a document from the database using the XML Extender UDFs,

try one of the following techniques (assuming XML Extender has exported the

file, in the server code page, to the file system on the server):

– Convert the document to the declared encoding code page

– Override the declared encoding, if the tool has an override facility

– Manually change the encoding declaration of the exported document to the

document’s actual encoding (that is, the server code page)
v When exporting a document from the database using the XML Extender stored

procedures, try one of the following techniques (assuming the client is querying

the result table, in which the composed document is stored):

– Convert the document to the declared encoding code page

– Override the declared encoding, if the tool has an override facility

– Before running the stored procedure, have the client set the CCSID variable to

force the client code page to a code page that is compatible with the encoding

declaration of the XML document.

– Manually change the encoding declaration of the exported document to the

document’s actual encoding (that is, the client code page)

Limitation when using Unicode and a Windows NT client: On Windows NT, the

operating system locale cannot be set to UTF-8. Use the following guidelines when

importing or exporting documents:

v When importing files and DTDs encoded in UTF-8, set the client code page to

UTF-8, using:

db2set DB2CODEPAGE=1208

Use this technique when:

– Inserting a DTD into the DB2XML.DTD_REF table

– Enabling a column or collection

– Decomposing stored procedures
v When using the Content() or XMLFromFile UDFs to import XML documents,

documents must be encoded in the code page of the server’s operating system

locale, which cannot be UTF-8.

308 XML Extender Administration and Programming

v When exporting an XML file from the database, set the client code page with the

following command to have DB2 UDB encode the resulting data in UTF-8:

db2set DB2CODEPAGE=1208

Use this technique when:

– Querying the result table after composition

– Extracting data from an XML column using the extract UDFs
v When using the Content() or XMLxxxfromFile UDFs to export XML documents

to files on the server file system, resulting documents are encoded in the code

page of the server’s operating system locale, which cannot be UTF-8.

Line ending considerations

When storing XML and DAD files, consider that the file can be treated

inconsistently by editors and parsers because DB2 UDB for OS/390 and z/OS

stores files with the NL as the line ending. Many tools do not recognize the NL line

endings.

DB2 uses the NL line ending because:

v DB2 uses Character Data Representation Architecture (CDRA) as the basis for

data conversions across systems through Distributed Relational Database

Architecture (DRDA).

v DB2 files are routinely accessed across operating systems

For example, SQL procedures source code, held in the DB2 UDB catalog, is stored

with [LF] as its line ending. In general files or documents can contain the following

line endings: [CR], [CRLF], or [LF], as well as [NL], as in the following example:

This is line 1 of a UNIX document [LF]

This is line 1 of an Apple Macintosh document [CR]

This is line 1 of a DOS/Windows document [CR][LF]

This is line 1 of an OS/390 and z/OS USS file [NL].....

Most workstation tools recognize [LF], [CR], and [CR][LF], but not [NL], which is

used by OS/390 and z/OS. Different line endings can appear together in one

document.

Processing XML documents with the linebrk utility

Use the linebrk utility to convert [NL] line endings [LF} line endings, or the

reverse.

Download the utility from the DB2 UDB XML Extender Web site:

http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

Syntax:

�� linebrk input_file_name output_file_name -nl

-f

-v
 ��

Where:

input_file_name

Specifies the name of the file to be processed.

output_file_name

Specifies the name of the resulting file.

Appendix B. Code page considerations 309

-nl Specifies that the file is to be converted from LF to NL.

-f Specifies that the file is to be converted from NL to LF.

-v Specifies the verbose option, which provides information as the command

processes the file.

310 XML Extender Administration and Programming

Appendix C. XML Extender limits

 This topic describes the limits for:

v XML Extender objects

v Values returned by user-defined functions

v Stored procedures parameters

v Administration support table columns

v Composition and decomposition

The following table describes the limits for XML Extender objects.

 Table 98. Limits for XML Extender objects

Object Limit

Maximum number of rows in a table in a

decomposition XML collection

10240 rows from each decomposed XML

document

Maximum bytes in XML file path name

specified as a parameter value

512 bytes

Length of the sql_stmt element in a DAD file

for SQL composition

Windows and UNIX

operating systems: 32,765 bytes.

OS/390 and iSeries operating

systems: 16,380 bytes.

Maximum number of columns for one table

that are specified for one table in the DAD

file for RDB_node decomposition

500 columns (columns for a table)

are specified by text_node

and attribute_node elements

in a DAD file.

The following table describes the limits values returned by XML Extender

user-defined functions.

 Table 99. Limits for user-defined function value

User-defined functions returned values Limit

Maximum bytes returned by an extractCHAR

UDF

254 bytes

Maximum bytes returned by an extractCLOB

UDF

2 gigabytes

Maximum bytes returned by an

extractVARCHAR UDF

4 kilobytes

The following table describes the limits for parameters of XML Extender stored

procedures.

 Table 100. Limits for stored procedure parameters

Stored procedure parameters Limit

Maximum size of an XML document CLOB1 1 MB

Maximum size of a Document Access

Definition (DAD) CLOB1

100 KB

Maximum size of collectionName 30 bytes

© Copyright IBM Corp. 1999, 2004 311

Table 100. Limits for stored procedure parameters (continued)

Stored procedure parameters Limit

Maximum size of colName 30 bytes

Maximum size of dbName 8 bytes

Maximum size of defaultView 128 bytes

Maximum size of rootID 30 bytes

Maximum size of resultTabName 18 bytes

Maximum size of tablespace 8 bytes

Maximum size of tbName2 18 bytes

Maximum size of resultColumn 30 bytes

Maximum size of validColumn 30 bytes

Maximum size of varchar_value 16366 bytes

Notes:

1. This size can be changed for dxxGenXMLClob and dxxRetrieveXMLCLOB.

2. If the value of the tbName parameter is qualified by a schema name, the entire name

(including the separator character) must be no longer than 128 bytes.

The following table describes the limits for the DB2XML.DTD_REF table.

 Table 101. XML Extender limits

DB2XML.DTD_REF table columns Limit

Size of AUTHOR column 128 bytes

Size of CREATOR column 128 bytes

Size of UPDATOR column 128 bytes

Size of DTDID column 128 bytes

Size of CLOB column 100 KB

Names can undergo expansion when DB2 UDB converts them from the client code

page to the database code page. A name might fit within the size limit at the client,

but exceed the limit when the stored procedure gets the converted name.

The following table describes limits for composition and decomposition.

 Table 102. Limits for XML Extender composition and decomposition

Object Limit

Maximum number of rows inserted into a

table in a decomposition XML collection

10240 rows from each decomposed XML

document

Maximum length of the name attribute in

elements_node or attribute_node within a

DAD

63 bytes

Maximum bytes in XMLFile path name

specified as a parameter value

512 bytes

 DB2DXX_MIN_TMPFILE_SIZE environment variable:

312 XML Extender Administration and Programming

XML Extender places large documents in temporary files to avoid using too much

memory during processing. On systems with large amounts of physical memory, it

is possible to avoid moving documents to temporary files, reducing the amount of

Input/Output activity. The environment variable DB2DXX_MIN_TMPFILE_SIZE

instructs XML Extender to use memory buffers, rather than temporary files, for

processing documents smaller than the specified value. The variable is applicable

only on the server, not on a client. If multiple physical nodes participate in a

multi-node partition, the variable may be set differently on each node, accurately

reflecting the amount of memory installed on each machine. If the environment

variable is not set, documents larger than 128KB will automatically be placed into

temporary files during processing, while documents smaller than 128K will be

processed in memory.

Appendix C. XML Extender limits 313

314 XML Extender Administration and Programming

Glossary

XML Extender glossary

absolute location path. The full path name of an

object. The absolute path name begins at the highest

level, or ″root″ element, which is identified by the

forward slash (/) or back slash (\) character.

access and storage method. Associates XML

documents to a DB2 UDB database through two major

access and storage methods: XML columns and XML

collections. See also XML column and XML collection.

access function. A user-provided function that

converts the data type of text stored in a column to a

type that can be processed by Text Extender.

administration. The task of preparing text documents

for searching, maintaining indexes, and getting status

information.

administrative support table. One of the tables that

are used by a DB2 UDB extender to process user

requests on image, audio, and video objects. Some

administrative support tables identify user tables and

columns that are enabled for an extender. Other

administrative support tables contain attribute

information about objects in enabled columns. Also

called a metadata table.

administrative support tables. A tables used by a DB2

UDB extender to process user requests on XML objects.

Some administrative support tables identify user tables

and columns that are enabled for an extender. Other

administrative support tables contain attribute

information about objects in enabled columns.

Synonymous with metadata table.

analyze. To calculate numeric values for the features

of an image and add the values to a QBIC catalog.

API. See application programming interface.

application programming interface (API).

 (1) A functional interface supplied by the operating

system or by a separately orderable licensed

program. An API allows an application program

that is written in a high-level language to use

specific data or functions of the operating system or

the licensed programs.

 (2) In DB2, a function within the interface, for

example, the get error message API.

 (3) The DB2 UDB extenders provide APIs for

requesting user-defined functions, administrative

operations, display operations, and video scene

change detection.and display operations.The DB2

text extender provides APIs for requesting

user-defined functions, administrative operations,

and information retrieval services.In DB2, a function

within the interface. For example, the get error

message API.

attribute. See XML attribute.

attribute_node. A representation of an attribute of an

element.

binary large object (BLOB). A binary string whose

length can be up to 2 GB. Image, audio, and video

objects are stored in a DB2 database as BLOBs.

Boolean search. A search in which one or more search

terms are combined using Boolean operators.

bound search. A search in Korean documents that

respects word boundaries.

browse. To view text displayed on a computer

monitor.

browser. A Text Extender function that enables you to

display text on a computer monitor.See Web browser.

B-tree indexing. The native index scheme provided by

the DB2 UDB engine. It builds index entries in the

B-tree structure. Supports DB2 base data types.

cast function. A function that is used to convert

instances of a (source) data type into instances of a

different (target) data type. In general, a cast function

has the name of the target data type. It has one single

argument whose type is the source data type; its return

type is the target data type.

catalog view. A view of a system table created by Text

Extender for administration purposes. A catalog view

contains information about the tables and columns that

have been enabled for use by Text Extender.

CCSID. Coded Character Set Identifier.

character large object (CLOB). A character string of

single-byte characters, where the string can be up to 2

GB. CLOBs have an associated code page. Text objects

that contain single-byte characters are stored in a DB2

UDB database as CLOBs.

CLOB. Character large object.

code page. An assignment of graphic characters and

control function meanings to all code points. For

example, assignment of characters and meanings to 256

code points for an 8-bit code.

© Copyright IBM Corp. 1999, 2004 315

column data. The data stored inside of a DB2 UDB

column. The type of data can be any data type

supported by DB2.

command line processor. A program called DB2TX

that:

 Allows you to enter Text Extender commands

 Processes the commands

 Displays the result.

compose. To generate XML documents from relational

data in an XML collection.

condition. A specification of either the criteria for

selecting XML data or the way to join the XML

collection tables.

DAD. See Document access definition.

data interchange. The sharing of data between

applications. XML supports data interchange without

needing to go through the process of first transforming

data from a proprietary format.

data source. A local or remote relational or

nonrelational data manager that is capable of

supporting data access via an ODBC driver that

supports the ODBC APIs.

data stream. Information returned by an API function,

comprising text (at least one paragraph) containing the

term searched for, and information for highlighting the

found term in that text.

data type. An attribute of columns and literals.

database partition. A part of the database that consists

of its own user data, indexes, configuration files, and

transaction logs. Sometimes called a node or database

node.

database partition server. Manages a database partition.

A database partition server is composed of a database

manager and the collection of data and system

resources that it manages. Typically, one database

partition server is assigned to each machine.

DBCLOB. Double-byte character large object.

DBCS. Double-byte character support.

decompose. Separates XML documents into a

collection of relational tables in an XML collection.

default casting function. Casts the SQL base type to a

UDT.

default view. A representation of data in which an

XML table and all of its related side tables are joined.

disable. To restore a database, a text table, or a text

column, to its condition before it was enabled for XML

Extender by removing the items created during the

enabling process.

distinct type. See user-defined type.

document. See text document.

Document Access Definition (DAD). Used to define

the indexing scheme for an XML column or mapping

scheme of an XML collection. It can be used to enable

an XML Extender column of an XML collection, which

is XML formatted.

Document type definition (DTD). A set of

declarations for XML elements and attributes. The DTD

defines what elements are used in the XML document,

in what order they can be used, and which elements

can contain other elements. You can associate a DTD

with a document access definition (DAD) file to

validate XML documents.

double-byte character large object (DBCLOB). A

character string of double-byte characters, or a

combination of single-byte and double-byte characters,

where the string can be up to 2 GB. DBCLOBs have an

associated code page. Text objects that include

double-byte characters are stored in a DB2 UDB

database as DBCLOBs.

DTD. (1) . (2) See Document type definition.

DTD reference table (DTD_REF table). A table that

contains DTDs, which are used to validate XML

documents and to help applications to define a DAD.

Users can insert their own DTDs into the DTD_REF

table. This table is created when a database is enabled

for XML.

DTD_REF table. DTD reference table.

DTD repository. A DB2 UDB table, called DTD_REF,

where each row of the table represents a DTD with

additional metadata information.

EDI. Electronic Data Interchange.

Electronic Data Interchange (EDI). A standard for

electronic data interchange for business-to-business

(B2B) applications.

element. See XML element.

element_node. A representation of an element. An

element_node can be the root element or a child

element.

embedded SQL. SQL statements coded within an

application program. See static SQL.

enable. To prepare a database, a text table, or a text

column, for use by XML Extender.

316 XML Extender Administration and Programming

escape character. A character indicating that the

subsequent character is not to be interpreted as a

masking character.

expand. The action of adding to a search term

additional terms derived from a thesaurus.

Extensible Stylesheet language (XSL). A language

used to express stylesheets. XSL consists of two parts: a

language for transforming XML documents, and an

XML vocabulary for specifying formatting semantics.

Extensible Stylesheet Language Transformation

(XSLT). A language used to transform XML

documents into other XML documents. XSLT is

designed for use as part of XSL, which is a stylesheet

language for XML.

external file. A text document in the form of a file

stored in the operating system’s file system, rather than

in the form of a cell in a table under the control of DB2.

A file that exists in a file system external to DB2.

file reference variable. A programming variable that

is useful for moving a LOB to and from a file on a

client workstation.

foreign key. A key that is part of the definition of a

referential constraint and that consists of one or more

columns of a dependent table.

function. See access function.

gigabyte (GB). One billion (10⁹) bytes. When referring

to memory capacity, 1 073 741 824 bytes.

host variable. A variable in an application program

that can be referred to in embedded SQL statements.

Host variables are the primary mechanism for

transmitting data between a database and application

program work areas.

image. An electronic representation of a picture.

index. To extract significant terms from text, and store

them in a text index.A set of pointers that are logically

ordered by the values of a key. Indexes provide quick

access to data and can enforce uniqueness on the rows

in the table.

Java Database Connectivity (JDBC). An application

programming interface (API) that has the same

characteristics as Open Database Connectivity (ODBC)

but is specifically designed for use by Java database

applications. Also, for databases that do not have a

JDBC driver, JDBC includes a JDBC to ODBC bridge,

which is a mechanism for converting JDBC to ODBC;

JDBC presents the JDBC API to Java database

applications and converts this to ODBC. JDBC was

developed by Sun Microsystems, Inc. and various

partners and vendors.

JDBC. Java Database Connectivity.

join. A relational operation that allows for retrieval of

data from two or more tables based on matching

column values.

joined view. A DB2 UDB view created by the

″CREATE VIEW″ statement which join one more tables

together.

kilobyte (KB). One thousand (10³) bytes. When

referring to memory capacity, 1024 bytes.

large object (LOB). A sequence of bytes, where the

length can be up to 2 GB. A LOB can be of three types:

binary large object (BLOB), character large object (CLOB),

or double-byte character large object (DBCLOB).

linguistic index. A text index containing terms that

have been reduced to their base form by linguistic

processing. “Mice”, for example, would be indexed as

“mouse”. See also precise index, Ngram index, and dual

index.

LOB. Large object.

LOB locator. A small (4-byte) value stored in a host

variable that can be used in a program to refer to a

much larger LOB in a DB2 UDB database. Using a LOB

locator, a user can manipulate the LOB as if it was

stored in a regular host variable, and without the need

to transport the LOB between the application on the

client machine and the database server.

local file system. A file system that exists in DB2

location path. Location path is a sequence of XML

tags that identify an XML element or attribute. The

location path identifies the structure of the XML

document, indicating the context for the element or

attribute. A single slash (/) path indicates that the

context is the whole document. The location path is

used in the extracting UDFs to identify the elements

and attributes to be extracted. The location path is also

used in the DAD file to specify the mapping between

an XML element, or attribute, and a DB2 UDB column

when defining the indexing scheme for XML column.

Additionally, the location path is used by the Text

Extender for structural-text search.

locator. A pointer which can be used to locate an

object. In DB2, the large object block (LOB) locator is

the data type which locates LOBs.

mapping scheme. A definition of how XML data is

represented in a relational database. The mapping

scheme is specified in the DAD. The XML Extender

provides two types of mapping schemes: SQL mapping

and relational database node (RDB_node) mapping.

megabyte (MB). One million (10⁶) bytes. When

referring to memory capacity, 1 048 576 bytes.

metadata table. See administrative support table.

Glossary 317

multiple occurrence. An indication of whether a

column element or attribute can be used more than

once in a document. Multiple occurrence is specified in

the DAD.

object. In object-oriented programming, an abstraction

consisting of data and the operations associated with

that data.

ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application

programming interface (API) for accessing data in both

relational and nonrelational database management

systems. Using this API, database applications can

access data stored in database management systems on

a variety of computers even if each database

management system uses a different data storage

format and programming interface. ODBC is based on

the call level interface (CLI) specification of the

X/Open SQL Access Group and was developed by

Digital Equipment Corporation (DEC), Lotus, Microsoft,

and Sybase. Contrast with Java Database Connectivity.

overloaded function. A function name for which

multiple function instances exist.

path expression. See location path.

predicate. An element of a search condition that

expresses or implies a comparison operation.

primary key. A unique key that is part of the

definition of a table. A primary key is the default

parent key of a referential constraint definition.

procedure. See stored procedure.

QBIC catalog. A repository that holds data about the

visual features of images.

query object. An object that specifies the features,

feature, values, and feature weights for a QBIC query.

The object can be named and saved for subsequent use

in a QBIC query. Contrast with query string

RDB_node. Relational database node.

RDB_node mapping. The location of the content of an

XML element, or the value of an XML attribute, which

are defined by the RDB_node. The XML Extender uses

this mapping to determine where to store or retrieve

the XML data.

relational database node (RDB_node). A node that

contains one or more element definitions for tables,

optional columns, and optional conditions. The tables

and columns are used to define how the XML data is

stored in the database. The condition specifies either

the criteria for selecting XML data or the way to join

the XML collection tables.

result set. A set of rows returned by a stored

procedure.

result table. A table which contains rows as the result

of an SQL query or an execution of a stored procedure.

root element. The top element of an XML document.

root ID. A unique identifier that associates all side

tables with the application table.

SBCS. Single-byte character support.

scalar function. An SQL operation that produces a

single value from another value and is expressed as a

function name, followed by a list of arguments

enclosed in parentheses.

schema. A collection of database objects such as tables,

views, indexes, or triggers. It provides a logical

classification of database objects.

search argument. The conditions specified when

making a search, consisting of one or several search

terms, and search parameters.

section search. Provides the text search within a

section which can be defined by the application. To

support the structural text search, a section can be

defined by the Xpath’s abbreviated location path.

shot catalog. A database table or file that is used to

store data about shots, such as the starting and ending

frame number for a shot, in a video clip. A user can

access a view of the table through an SQL query, or

access the data in the file.

side table. Additional tables created by the XML

Extender to improve performance when searching

elements or attributes in an XML column.

simple location path. A sequence of element type

names connected by a single slash (/).

SQL mapping. A definition of the relationship of the

content of an XML element or value of an XML

attribute with relational data, using one or more SQL

statements and the XSLT data model. The XML

Extender uses the definition to determine where to

store or retrieve the XML data. SQL mapping is defined

with the SQL_stmt element in the DAD.

static SQL. SQL statements that are embedded within

a program, and are prepared during the program

preparation process before the program is executed.

After being prepared, a static SQL statement does not

change, although values of host variables specified by

the statement might change.

stored procedure. A block of procedural constructs

and embedded SQL statements that is stored in a

database and can be called by name. Stored procedures

allow an application program to be run in two parts.

One part runs on the client and the other part runs on

the server. This allows one call to produce several

accesses to the database.

318 XML Extender Administration and Programming

structural text index. To index text keys based on the

tree structure of the XML document, using the DB2

UDB Text Extender.

subquery. A full SELECT statement that is used

within a search condition of an SQL statement.

table space. An abstraction of a collection of

containers into which database objects are stored. A

table space provides a level of indirection between a

database and the tables stored within the database. A

table space:

v Has space on media storage devices assigned to it.

v Has tables created within it. These tables will

consume space in the containers that belong to the

table space. The data, index, long field, and LOB

portions of a table can be stored in the same table

space, or can be individually broken out into

separate table spaces.

terabyte. A trillion (1012) bytes. Ten to the twelfth

power bytes. When referring to memory capacity,

1 099 511 627 776 bytes.

text_node. A representation of the CDATA text of an

element.

text table. A DB2 UDB table containing text columns.

top element_node. A representation of the root

element of the XML document in the DAD.

tracing. The action of storing information in a file that

can later be used in finding the cause of an error.

trigger. The definition of a set of actions to be taken

when a table is changed. Triggers can be used to

perform actions such as validating input data,

automatically generating a value for a newly inserted

row, reading from other tables for cross-referencing

purposes, or writing to other tables for auditing

purposes. Triggers are often used for integrity checking

or to enforce business rules.

trigger. A mechanism that automatically adds

information about documents that need to be indexed

to a log table whenever a document is added, changed,

or deleted from a text column.

UDF. See user-defined function.

UDT. See user-defined type.

uniform resource locator (URL). An address that

names an HTTP server and optionally a directory and

file name, for example: http://www.ibm.com/software

/data/db2/extenders.

UNION. An SQL operation that combines the results

of two select statements. UNION is often used to merge

lists of values that are obtained from several tables.

URL. Uniform resource locator.

user-defined distinct type (UDT). A data type created

by a user of DB2, in contrast to a data type provided

by DB2 UDB such as LONG VARCHAR.

user-defined function (UDF). A function that is

defined by a user to DB2. Once defined, the function

can be used in SQL queries. and video objects. For

example, UDFs can be created to get the compression

format of a video or return the sampling rate of an

audio. This provides a way of defining the behavior of

objects of a particular type.

user-defined function (UDF). An SQL function

created by a user of DB2, in contrast to an SQL

function provided by DB2. Text Extender provides

search functions, such as CONTAINS, in the form of

UDFs.

user-defined type (UDT). A data type that is defined

by a user to DB2. UDTs are used to differentiate one

LOB from another. For example, one UDT can be

created for image objects and another for audio objects.

Though stored as BLOBs, the image and audio objects

are treated as types distinct from BLOBs and distinct

from each other.

user-defined function (UDF). A function that is

defined to the database management system and can be

referenced thereafter in SQL queries. It can be one of

the following functions:

v An external function, in which the body of the

function is written in a programming language

whose arguments are scalar values, and a scalar

result is produced for each invocation.

v A sourced function, implemented by another built-in

or user-defined function that is already known to the

DBMS. This function can be either a scalar function

or column (aggregating) function, and returns a

single value from a set of values (for example, MAX

or AVG).

user-defined type (UDT). A data type that is not

native to the database manager and was created by a

user. See distinct type.

user table. A table that is created for and used by an

application.

validation. The process of using a DTD to ensure that

the XML document is valid and to allow structured

searches on XML data. The DTD is stored in the DTD

repository.

valid document. An XML document that has an

associated DTD. To be valid, the XML document cannot

violate the syntactic rules specified in its DTD.

video. Pertaining to the portion of recorded

information that can be seen.

video clip. A section of filmed or videotaped material.

Glossary 319

video index. A file that the Video Extender uses to

find a specific shot or frame in a video clip.

Web browser. A client program that initiates requests

to a Web server and displays the information that the

server returns.

well-formed document. An XML document that does

not contain a DTD. Although in the XML specification,

a document with a valid DTD must also be

well-formed.

wildcard character. See masking character.

WLM. Work Load Manager

XML. eXtensible Markup Language.

XML attribute. Any attribute specified by the

ATTLIST under the XML element in the DTD. The

XML Extender uses the location path to identify an

attribute.

XML collection. A collection of relation tables which

presents the data to compose XML documents, or to be

decomposed from XML documents.

XML column. A column in the application table that

has been enabled for the XML Extender UDTs.

XML element. Any XML tag or ELEMENT as

specified in the XML DTD. The XML Extender uses the

location path to identify an element.

XML object. Equivalent to an XML document.

XML Path Language. A language for addressing parts

of an XML document. XML Path Language is designed

to be used by XSLT. Every location path can be

expressed using the syntax defined for XPath.

XML table. An application table which includes one

or more XML Extender columns.

XML tag. Any valid XML markup language tag,

mainly the XML element. The terms tag and element

are used interchangeably.

XML UDF. A DB2 UDB user-defined function

provided by the XML Extender.

XML UDT. A DB2 UDB user-defined type provided

by the XML Extender.

XPath. A language for addressing parts of an XML

document.

XPath data model. The tree structure used to model

and navigate an XML document using nodes.

XSL. XML Stylesheet Language.

XSLT. XML Stylesheet Language Transformation.

320 XML Extender Administration and Programming

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2004 321

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

322 XML Extender Administration and Programming

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both, and have been used in

at least one of the documents in the DB2 UDB documentation library.

 ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C Set++

C/370

CICS

Database 2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2 Connect

DB2 Extenders

DB2 OLAP Server

DB2 Information Integrator

DB2 Query Patroller

DB2 Universal Database

Distributed Relational

 Database Architecture

DRDA

eServer

Extended Services

FFST

First Failure Support Technology

IBM

IMS

IMS/ESA

iSeries

LAN Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 UDB

documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other

countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Notices 323

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Sleepycat and the names of Sleepycat Software products referenced herein are

trademarks, registered trademarks or service marks of Sleepycat Software, Inc.

Other company, product, or service names may be trademarks or service marks of

others.

324 XML Extender Administration and Programming

Index

A
access and storage method

choosing an 40

planning 40

XML collections 43, 44, 169

XML columns 43, 44, 169

access method
choosing an 40

introduction 5

planning an 40

XML collections 91

XML column 73

adding
nodes 65

administration
dxxadm command 127

support tables
DTD_REF 269

XML_USAGE 269

tools 38

administration stored procedures
dxxDisableCollection() 200

dxxDisableColumn() 198

dxxDisableSRV() 196

dxxEnableCollection() 199

dxxEnableColumn() 197

dxxEnableSRV() 196

administration wizard
Enable a Column window 55

logging in 39

specifying address 39

specifying JDBC driver 39

specifying user ID and password 39

administrative support tables
DTD_REF 269

XML_USAGE 269

attribute_node 45, 51, 109, 169

B
B-tree indexing 75

binding
stored procedures 201

C
casting function

retrieval 78, 141

storage 76, 138

update 82, 158

CCSID (coded character set identifier)
declare in USS 92, 96, 301

client code page 301

code pages
client 301

configuring locale settings 301

consistent encoding in USS 301

consistent encodings and

declarations 301

code pages (continued)
conversion

scenarios 301

data loss 301

database 301

DB2 assumptions 301

DB2CODEPAGE registry

variable 301

declaring an encoding 301

document encoding consistency 301

encoding declaration 301

exporting documents 301

importing documents 301

legal encoding declarations 301

line endings 301

preventing inconsistent

documents 301

server 301

supported encoding declarations 301

terminology 301

UDFs and stored procedures 301

Windows NT UTF-8 limitation 301

XML Extender assumptions 301

column data
available UDTs 42

column type, for decomposition 51

column types
decomposition 109

command options
disable_column 131

complexType element 120

composing XML documents 20

composite key
for decomposition 50

XML collections 50

composite keys
for decomposition 109

XML collections 109

composition
dxxGenXML() 92

dxxRetrieveXML() 92

overriding the DAD file 178

stored procedures
dxxGenXML() 20, 202, 210

dxxmqGen() 242

dxxmqRetrieve() 247

dxxRetrieveXML() 206, 212

XML collection 92

conditions
optional 50

RDB_node mapping 50, 109

SQL mapping 47, 49, 104, 107

consistent documents 301

Content() function
for retrieval 78

retrieval functions using 141

XMLFile to a CLOB 141

conversions
code pages 301

creating
nodes 65

creating (continued)
XML tables 53

D
DAD

node definitions
RDB_node 50

DAD (Document Access Definition)
checker

description 184

using 184

file
attribute_node 169

bind step for USS encodings 301

CCSIDs in USS 92, 96, 301

creating for XML collections 63

declaring the encoding 301

DTD for the 173

editing for XML collections 63

element_node 109, 169

examples 293

for XML columns 167, 169

introduction 5

node definitions 169

overriding 178

RDB_node 109

root element_node 109

root_node 169

samples 293

size limit 169, 311

text_node 169

DAD file
attribute_node 45

element_node 44, 50

for XML columns 43, 44

node definitions
attribute_node 44

element_node 44

root_node 44

text_node 44

planning for the 43, 44

XML collections 43

XML column 43

RDB_node 50

root element_node 50

root_node 44

size limit 43, 44

text_node 44

data loss, inconsistent encodings 301

database
relational 46

databases
code page 301

enabling for XML 53

relational 104

DB2CODEPAGE
registry variable 301

DB2XML 269

DTD_REF table schema 269

schema for stored procedures 91

© Copyright IBM Corp. 1999, 2004 325

DB2XML (continued)
schema for UDFs and UDTs 119

XML_USAGE table schema 269

decomposing an XML collection
collection table limit 311

composite key 109

DB2 table sizes 96

dxxInsertXML() 96

dxxShredXML() 96

of XML collections 96

specifying the column type for 109

specifying the orderBy attribute 109

specifying the primary key for 109

stored procedures
dxxInsertXML() 217

dxxmqInsert() 256

dxxmqInsertAll 260

dxxmqInsertAllCLOB() 261

dxxmqInsertCLOB() 258

dxxmqShred() 251

dxxmqShredAll() 253

dxxShredXML() 214

using RDB_node mapping 65

decomposition
composite key 50

DB2 table sizes 51

specifying the column type for 51

specifying the orderBy attribute 51

specifying the primary key for 50

deleting
nodes 65

XML collections 101

disable_collection subcommand 132

disable_column command 131

disable_server subcommand 129

disabling
administration command 127

disable_collection subcommand 132

disable_column command 131

disable_server subcommand 129

stored procedure 198, 200

XML collections 116

stored procedure 200

XML columns
stored procedure 198

document encoding declaration 301

document structure, maintaining 73

document type definition 54

DTD
availability 4

for getting started lessons 20

for the DAD 173

planning 20

publication 4

repository
DTD_REF 5, 269

storing in 54

using multiple 44, 52

DTD_REF table 54

column limits 311

inserting a DTD 54

schema 269

DTDID 269

DVALIDATE 163

DXX_SEQNO for multiple occurrence 58

dxxadm command
disable_collection subcommand 132

dxxadm command (continued)
disable_column command 131

disable_server subcommand 129

enable_collection subcommand 132

enable_column subcommand 130

enable_server subcommand 128

introduction to 127

syntax 127

dxxDisableCollection() stored

procedure 200

dxxDisableColumn() stored

procedure 198

dxxDisableSRV() stored procedure 196

dxxEnableCollection() stored

procedure 199

dxxEnableColumn() stored

procedure 197

dxxEnableSRV() stored procedure 196

dxxGenXML() 20

dxxGenXML() stored procedure 92, 202,

210

dxxInsertXML() stored procedure 96,

217

dxxmqGen() stored procedure 242

dxxmqInsert() stored procedure 256

dxxmqInsertAll() stored procedure 260

dxxmqInsertAllCLOB() stored

procedure 261

dxxmqInsertCLOB() stored

procedure 258

dxxmqRetrieve() stored procedure 247

dxxmqShred() stored procedure 251

dxxRetrieveXML() stored procedure 92,

206, 212

DXXROOT_ID 75

dxxShredXML() stored procedure 96,

214

dxxtrc command 271, 272

dynamically overriding the DAD file,

composition 178

E
element_node 44, 51, 109, 169

Enable a Column window 55

enable_db keyword
creating XML_USAGE table 269

enable_server keyword 128

enabling
XML collections 114

encoding
CCSID declarations in USS 92, 96,

301

XML documents 301

environment variables
CLASSPATH 39

existing DB2 data 91

Extensible Markup Language (XML)
in XML documents 3

extractChar() function 151

extractChars() function 151

extractCLOB() function 154

extractCLOBs() function 154

extractDate() function 155

extractDates() function 155

extractDouble() function 149

extractDoubles() function 149

extracting functions
description 137

extractChar() 151

extractChars() 151

extractCLOB() 154

extractCLOBs() 154

extractDate() 155

extractDates() 155

extractDouble() 149

extractDoubles() 149

extractReal() 150

extractReals() 150

extractSmallint() 147

extractSmallints() 147

extractTime() 156

extractTimes() 156

extractTimestamp() 157

extractTimestamps() 157

extractVarchar() 152

extractVarchars() 152

introduction to 146

table of 78

extractReal() function 150

extractReals() function 150

extractSmallint() function 147

extractSmallints() function 147

extractTime() function 156

extractTimes() function 156

extractTimestamp() function 157

extractTimestamps() function 157

extractVarchar() function 152

extractVarchars() function 152

F
FROM clause 49

SQL mapping 107

function path
adding DB2XML schema 119

functions
casting 76, 78, 82

Content(): from XMLFILE to

CLOB 141

extractChar() 151

extractChars() 151

extractCLOB() 154

extractCLOBs() 154

extractDate() 155

extractDates() 155

extractDouble() 149

extractDoubles() 149

extracting 146

extractReal() 150

extractReals() 150

extractSmallint() 147

extractSmallints() 147

extractTime() 156

extractTimes() 156

extractTimestamp() 157

extractTimestamps() 157

extractVarchar() 152

extractVarchars() 152

generate_unique 137

limitations when invoking from

JDBC 88

limits 311

MQReadAllXML 225

326 XML Extender Administration and Programming

functions (continued)
MQReadAllXMLCLOB 228

MQReadXML 223

MQReadXMLCLOB 227

MQReceiveAllXML 232

MQReceiveXML 230

MQReceiveXMLCLOB 235

MQSENDXML 236

MQSENDXMLFILE 238

MQSendXMLFILECLOB 239

retrieval
description 137

from external storage to memory

pointer 141

from internal storage to external

server file 141

introduction 141

XML data 78

storage 76, 137, 138

update 82, 137, 158

XML columns 137

XMLCLOBFromFile() 138

XMLFile to a CLOB 141

XMLFileFromCLOB() 138

XMLFileFromVarchar() 138, 139

XMLVarcharFromFile() 138, 140

H
highlighting conventions vii

I
importing

DTD 54

include files
for stored procedures 201

inconsistent
document 301

indexing 75

side tables 60, 75

structural-text 75

XML columns 75

XML documents 75

Information Center, including this book

in vii

installing
the 37

J
Java database connectivity (JDBC)

limitations when invoking UDFs 88

JDBC (Java database connectivity)
limitations when invoking UDFs 88

JDBC address, for wizard 39

JDBC driver, for wizard 39

join conditions
RDB_node mapping 50, 109

SQL mapping 49, 107

L
limits

stored procedure parameters 92, 269

limits (continued)
XML Extender 311

line
endings, code page

considerations 301

locales
settings 301

location path
introduction 112

syntax 113

XPath 5

XSL 5

logging
in, for wizard 39

M
maintaining

document structure 73

mapping scheme
determining RDB_node mapping 47,

104

determining SQL mapping 47, 104

figure of DAD file 40

figure of DAD for the 41

for XML collections 40, 41

for XML columns 40, 41

FROM clause 49, 107

introduction 91

ORDER BY clause 49, 107

RDB_node mapping

requirements 50, 109

requirements 48

SELECT clause 48, 107

SQL mapping requirements 48, 107

SQL mapping scheme 48, 104

SQL_stmt 46, 104

WHERE clause 49, 107

messages
XML 278

migrating
XML Extender to Version 8 37

MQPublishXML function 222

MQRcvAllXML function 234

MQReadAllXML function 225

MQReadAllXMLCLOB function 228

MQReadXML function 223

MQReadXMLCLOB function 227

MQReceiveAllXML function 232

MQReceiveXML function 230

MQReceiveXMLCLOB function 235

MQSENDXML function 236

MQSENDXMLFILE function 238

MQSendXMLFILECLOB function 239

multiple DTDs
XML collections 44

XML columns 52

multiple occurrence
affecting table size 51, 96

deleting elements and attributes 101

DXX_SEQNO 58

one column per side table 58

order of elements and attributes 96

orderBy attribute 50, 109

preserving the order of elements and

attributes 101

recomposing documents with 50, 109

multiple occurrence (continued)
searching elements and attributes 83

updating collections 101

updating elements and attributes 82,

101, 158

updating XML documents 82, 158

multiple-occurrence attribute 20

N
nodes

adding 65

attribute_node 45, 169

creating 65

DAD file configuration 20, 60, 63, 65

deleting 65

element_node 44, 169

RDB_node 50, 109

removing 65

root_node 44, 169

text_node 44, 169

O
operating systems

supported by DB2 3

Operations Navigator
starting the trace 271

stopping the trace 272

ORDER BY clause 49

SQL mapping 107

orderBy attribute
for decomposition 51, 109

for multiple occurrence 50, 109

XML collections 51, 109

overloaded function
Content() 141

overrideType
No override 178

SQL override 178

XML override 178

overriding
DAD file 178

P
parameter markers in functions 88

performance
indexing side tables 75

searching XML documents 75

stopping the trace 272

planning
a mapping scheme 46

access methods 40

choosing to validate XML data 44

DAD 169

determining column UDT 42

DTD 20

for the DAD 43, 44

for XML collections 44

for XML columns 42, 43

how to search XML column data 43

indexing XML columns 75

mapping schemes 104

mapping XML document and

database 20

Index 327

planning (continued)
side tables 58

storage methods 40

the XML collections mapping

scheme 46

validating with multiple DTDs 44, 52

XML collections 169

XML collections mapping

scheme 104

primary key for decomposition 50

primary keys
decomposition 109

side tables 75

problem determination 271

processing instructions 45, 112, 169

R
RDB_node mapping

composite key for decomposition 50

conditions 50

decomposition requirements 50

determining for XML collections 47

requirements 50, 109

specifying column type for

decomposition 51

registry variables
DB2CODEPAGE 301

removing
nodes 65

repository, DTD 54

retrieval functions
Content() 141

description of 137

from external storage to memory

pointer 141

from internal storage to external

server file 141

introduction to 141

XMLFile to a CLOB 141

retrieving data
attribute values 78

return codes
stored procedures 273

UDF 273

ROOT ID
indexing considerations 75

specifying 55

root_node 44, 169

S
samples

creating
XML 20

document access definition (DAD)

files 293

getstart.xml sample XML

document 293

schema names
for stored procedures 91

schemas
attributes 121

DB2XML 53, 119

declaring data types in 121

declaring elements in 121

schemas (continued)
DTD_REF table 54, 269

validating using 52

XML_USAGE table 269

searching
XML documents

by structure 83

using DB2 Text Extender 83

SELECT clause 48, 107

server code page 301

side tables
indexing 60, 75

planning 58

searching 83

specifying ROOT ID 55

updating 82

size limits
stored procedures 92, 269

XML Extender 311

software requirements
XML Extender 37

SQL mapping 60

creating a DAD file 20

determining for XML collections 47,

104

FROM clause 49

ORDER BY clause 49

requirements 48, 107

SELECT clause 48

SQL mapping scheme 48

WHERE clause 49

SQL override 178

SQL_stmt
FROM clause 49, 107

ORDER_BY clause 49, 107

SELECT clause 48, 107

WHERE clause 49, 107

starting
XML Extender 37

storage
functions

description 137

introduction 138

storage UDF table 76

XMLCLOBFromFile() 138

XMLFileFromCLOB() 138

XMLFileFromVarchar() 138, 139

XMLVarcharFromFile() 138, 140

methods
choosing 40

introduction 5

planning 40

XML collections 91

XML column 73

storage UDFs 76, 82

stored procedures
administration

dxxDisableCollection() 200

dxxDisableColumn() 198

dxxDisableSRV() 196

dxxEnableCollection() 199

dxxEnableColumn() 197

dxxEnableSRV() 196

XML Extender, list 195

binding 201

calling
XML Extender 201

stored procedures (continued)
code page considerations 301

composition
dxxGenXML() 202, 210

dxxmqGen() 242

dxxmqRetrieve() 247

dxxRetrieveXML() 206, 212

XML Extenders 200

decomposition
dxxInsertXML() 217

dxxmqInsert() 256

dxxmqInsertAll 260

dxxmqInsertAllCLOB() 261

dxxmqInsertCLOB() 258

dxxmqShred() 251

dxxmqShredAll() 253

dxxShredXML() 214

XML Extenders 214

dxxDisableCollection() 200

dxxDisableColumn() 198

dxxDisableSRV() 196

dxxEnableCollection() 199

dxxEnableColumn() 197

dxxEnableSRV() 196

dxxGenXML() 20, 92, 202, 210

dxxInsertXML() 96, 217

dxxmqGen() 242

dxxmqInsert() 256

dxxmqInsertAll() 260

dxxmqInsertAllCLOB() 261

dxxmqInsertCLOB() 258

dxxmqRetrieve() 247

dxxmqShred() 251

dxxRetrieveXML() 92, 206, 212

dxxShredXML() 96, 214

include files 201

initializing
DXXGPREP 201

return codes 273

XML Extender 195

storing the DTD 54

storing XML data 76

structure
DTD 20

hierarchical 20

mapping 20

relational tables 20

XML document 20

stylesheets 45, 112, 169

SVALIDATE 163

syntax
disable_collection subcommand 132

disable_column command 131

disable_server subcommand 129

dxxadm 127

enable_collection subcommand 132

enable_column subcommand 130

enable_server subcommand 128

extractChar() function 151

extractChars() function 151

extractCLOB() function 154

extractCLOBs() function 154

extractDate() function 155

extractDates() function 155

extractDouble() function 149

extractDoubles() function 149

extractInteger() function 146

328 XML Extender Administration and Programming

syntax (continued)
extractIntegers() function 146

extractReal() function 150

extractReals() function 150

extractSmallint() function 147

extractSmallints() function 147

extractTime() function 156

extractTimes() function 156

extractTimestamp() function 157

extractTimestamps() function 157

extractVarchar() function 152

extractVarchars() function 152

how to read viii

location path 113

Update() function 158

XMLCLOBFromFile() function 138

XMLFile to a CLOB Content()

function 141

XMLFileFromCLOB() function 138

XMLFileFromVarchar() function 138,

139

XMLVarcharFromFile() function 140

T
tables 96

tables sizes, for decomposition 51

text_node 44, 51, 109, 169

traces
starting 271

stopping 272

transfer of documents between client and

server, considerations 301

transforming XML to HTML
XSLTransformToCLOB 266

XSLTransformToFile 267

troubleshooting
stored procedure return codes 273

strategies 271

UDF return codes 273

U
UDFs (user-defined functions)

code page considerations 301

DVALIDATE() 163

extractChar() 151

extractChars() 151

extractCLOB() 154

extractCLOBs() 154

extractDate() 155

extractDates() 155

extractDouble() 149

extractDoubles() 149

extracting functions 146

extractReal() 150

extractReals() 150

extractSmallint() 147

extractSmallints() 147

extractTime() 156

extractTimes() 156

extractTimestamp() 157

extractTimestamps() 157

extractVarchar() 152

extractVarchars() 152

for XML columns 137

UDFs (user-defined functions) (continued)
from external storage to memory

pointer 141

from internal storage to external

server file 141

retrieval functions 141

return codes 273

searching with 83

storage 82

SVALIDATE() 163

Update() 82, 158

XMLCLOBFromFile() 138

XMLFile to a CLOB 141

XMLFileFromCLOB() 138

XMLFileFromVarchar() 138, 139

XMLVarcharFromFile() 138, 140

UDTs
summary table of 42

XMLCLOB 42

XMLFILE 42

XMLVARCHAR 42

Update() function
document replacement behavior 158

introduction 158

XML 82, 137

updates
side tables 82

XML collection 101

XML column data
attributes 82

description 82

entire document 82

multiple occurrence 158

specific elements 82

XML document replacement by

Update() UDF 158

user IDs
Administration wizard 39

user-defined functions (UDFs)
for XML columns 137

searching with 83

Update() 82, 158

user-defined types (UDTs)
for XML columns 73

XML 135

XMLCLOB 73

XMLFILE 73

XMLVARCHAR 73

V
validate XML data

considerations 44

deciding to 44

DTD requirements 44

validating
performance impact 44

using schemas 52

XML DTDs 54

W
WHERE clause 49

requirements for SQL mapping 107

Windows
UTF-8 limitation, code pages

Windows NT 301

X
XML

data, storing 76

override 178

repository 40

tables, creating 53

XML collections
composition 92

creating the DAD (command line) 63

DAD file, planning for 43

decomposing using RDB_node

mapping 65

decomposition 96

definition 5

determining a mapping scheme 104

determining a mapping scheme

for 46

disabling 116

DTD for validation 54

editing the DAD (command line) 63

enabling 114

introduction 91

mapping scheme 46

mapping schemes 47, 104

RDB_node mapping 47, 104

scenarios 42

SQL mapping 47, 104

storage and access methods 5, 91

validation 54

when to use 42

XML columns
creating a DAD file for 167

DAD file, planning for 43

defining and enabling 74

definition 5

determining column UDT 42

elements and attributes to be

searched 43

enabling 55

figure of side tables 58

indexing 75

introduction 73

location path 112

maintaining document structure 73

planning 42

retrieving data
attribute values 78

element contents 78

entire document 78

retrieving XML data 78

sample DAD file 293

scenarios 41

storage and access methods 5, 73

the DAD for 43

UDFs 137

updating XML data
attributes 82

entire document 82

specific elements 82

when to use 41

with side tables 75

Index 329

XML documents
B-tree indexing 75

code page assumptions 301

code page consistency 301

code page conversion, exporting 301

code page conversion, importing 301

composing 20, 92

decomposition 96

deleting 88

encoding declarations 301

indexing 75

introduction 3

legal encoding declarations 301

mapping to tables 20

searching
direct query on side tables 83

document structure 83

from a joined view 83

multiple occurrence 83

structural text 83

with extracting UDFs 83

stored in DB2 3

supported encoding declarations 301

XML DTD repository
description 5

DTD Reference Table (DTD_REF) 5

XML Extender
available operating systems 3

functions 137

introduction 3

stored procedures 195

XML Path Language 5

XML schemas
advantages 119

example 122

validating 163

XML Toolkit for OS/390 and z/OS 7

XML_USAGE table 269

XMLClobFromFile() function 138

XMLFile to a CLOB function 141

XMLFileFromCLOB() function 138

XMLFileFromVarchar() function 138, 139

XMLVarcharFromFile() function 138, 140

XPath 5

XSLT 47, 104

using 20

XSLTransformTOClob() 266

XSLTransformToFile 267

330 XML Extender Administration and Programming

Contacting IBM

In the United States, call one of the following numbers to contact IBM:

v 1-800-IBM-SERV (1-800-426-7378) for customer service

v 1-888-426-4343 to learn about available service options

v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:

v 1-800-IBM-SERV (1-800-426-7378) for customer service

v 1-800-465-9600 to learn about available service options

v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of

Worldwide Contacts on the web at http://www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by telephone

or by the World Wide Web at http://www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering books,

product downloads, newsgroups, FixPaks, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.

v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM

Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 1999, 2004 331

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

332 XML Extender Administration and Programming

����

Program Number: 5625–DB2

Printed in USA

SC18-7431-01

	Contents
	About this guide
	Who should use this guide
	How to get a current version of this guide
	How to use this guide
	Highlighting conventions
	How to read syntax diagrams
	Accessibility

	Part 1. Introduction
	Chapter 1. Introduction
	Introduction to XML Extender
	XML Documents
	How XML data is handled in DB2
	Features of XML Extender
	XML Extender tutorial lessons
	Prerequisites
	Scenario for the lessons

	Lesson: Storing an XML document in an XML column
	Lesson: Composing an XML document

	Part 2. Administration
	Chapter 2. Administration
	Administration tools for XML Extender
	Preparing to administer XML Extender
	Migrating XML Extender from Version 7 to Version 8
	XML Extender administration planning
	Setting up the administration wizard
	Access and storage methods
	When to use the XML column method
	When to use the XML collection method
	Planning for XML columns
	XML data types for the XML columns
	Elements and attributes to index for XML columns
	The DAD file for XML columns

	Planning for XML collections
	Validation
	The DAD file for XML collections
	Mapping schemes for XML collections
	Types of mapping schemes
	Mapping scheme requirements

	Decomposition table size requirements for RDB node mapping

	Validating XML documents automatically
	Enabling servers for XML
	Creating an XML table
	Storing a DTD in the repository table
	Enabling XML columns
	Planning side tables
	Indexing side tables
	Composing XML documents by using SQL mapping
	Composing XML collections by using RDB_node mapping
	Decomposing an XML collection by using RDB_node mapping

	Part 3. Programming
	Chapter 3. XML columns
	Managing data in XML columns
	XML columns as a storage and access method
	Defining and enabling an XML column
	Using indexes for XML column data
	Storing XML data
	Default casting functions for storing XML data
	Storage UDFs for storing XML data

	Method for retrieving an XML document
	Retrieving an entire XML document
	Default casting functions for retrieving XML data
	Using the Content() UDF for retrieving XML data

	Retrieving element contents and attribute values from XML documents

	Updating XML data
	Updating an entire XML document
	Updating with a default casting function
	Updating XML documents with a storage UDF

	Updating specific elements and attributes of an XML document

	Methods for searching XML documents
	Searching the XML document by structure
	Example: searching with direct query on side tables
	Example: searching from a joined view
	Example: searching with extracting UDFs
	Example: searching on elements or attributes with multiple occurrence

	Using the DB2 UDB Text Extender for structural text searches of XML documents
	Using structural text searches and full text searches
	Enabling an XML column for the DB2 UDB Text Extender
	Searching for text using the DB2 UDB Net Search Extender

	Deleting XML documents
	Limitations when invoking functions from Java Database (JDBC)

	Chapter 4. Managing data in XML collections
	XML collections as a storage and access method
	Managing data in XML collections
	Preparing to compose XML documents from DB2 data
	Composing XML documents that will be updated occasionally
	Composing XML documents that will be updated frequently

	Decomposing XML documents into DB2 UDB data
	Enabling an XML collection for decomposition
	Decomposition table size limits

	Updating, deleting, and retrieving data in XML collections
	Updating data in an XML collection
	Updating element and attribute values
	Deleting element and attribute instances

	Deleting an XML document from an XML collection
	Retrieving XML documents from an XML collection

	Searching XML collections
	Composing XML documents using search criteria
	Searching for decomposed XML data

	Mapping schemes for XML collections
	Requirements for using SQL mapping
	Requirements for RDB_Node mapping
	Stylesheets for an XML collection
	Location paths
	Location path syntax
	Enabling XML collections
	Disabling XML collections

	Chapter 5. XML schemas
	Advantages of using XML schemas instead of DTDs
	UDTs and UDF names for XML Extender
	XML schema complexType element
	Data types, elements and attributes in schemas
	Simple data types in XML schemas
	Elements in XML schemas
	Attributes in XML schemas

	Examples of an XML schema
	XML document instance using the schema
	XML document instance using a DTD

	Part 4. Reference
	Chapter 6. The dxxadm administration command
	dxxadm command overview
	Syntax of the dxxadm administration command
	Subcommands of the administration command
	enable_server option of the dxxadm command
	disable_server option of the dxxadm command
	enable_column option of the dxxadm command
	disable_column option of the dxxadm command
	enable_collection option of the dxxadm command
	disable_collection option

	Chapter 7. XML Extender user-defined types
	Chapter 8. XML Extender user-defined functions
	Types of XML Extender user-defined functions
	Storage functions
	Storage functions in XML Extender overview
	XMLCLOBFromFile() function
	XMLFileFromCLOB() function
	XMLFileFromVarchar() function
	XMLVarcharFromFile() function

	Retrieval functions
	Retrieval functions in XML Extender
	Content(): retrieve from XMLFILE to a CLOB
	Content(): retrieve from XMLVARCHAR to an external server file
	Content(): retrieval from XMLCLOB to an external server file

	Extraction functions
	Extracting functions in XML Extender
	extractInteger() and extractIntegers()
	extractSmallint() and extractSmallints()
	extractDouble() and extractDoubles()
	extractReal() and extractReals()
	extractChar() and extractChars()
	extractVarchar() and extractVarchars()
	extractCLOB() and extractCLOBs()
	extractDate() and extractDates()
	extractTime() and extractTimes()
	extractTimestamp() and extractTimestamps()

	Update functions in XML Extender
	Purpose
	Syntax
	Parameters
	Return type
	Example
	Usage
	How the Update() function processes the XML document
	Multiple occurrence
	Examples

	Validation functions
	SVALIDATE() function
	Syntax
	Parameters
	Examples

	DVALIDATE() function
	Syntax
	Parameters

	Chapter 9. Document access definition (DAD) files
	Creating a DAD file for XML columns
	DAD files for XML collections
	SQL composition
	RDB node composition
	Composition from rows that have null values

	DTD for the DAD file
	Dynamically overriding values in the DAD file
	Dad Checker
	Using the DAD checker
	Checks performed by the DAD checker
	Well-formedness and DTD validation
	Duplicate <attribute_node> and leaf <element_node> detection (RDB_node mapping)
	Missing type attribute detection
	Missing table declaration detection
	Missing <text_node> or <attribute_node> detection
	Check for <attribute_node> and <element_node> mapping order
	Data mapping consistency check for tags with identical name attribute values
	Multi_occurrence attribute value checking for parent <element_node> with mapped children

	Attribute and element naming conflict

	Chapter 10. XML Extender stored procedures
	XML Extender stored procedures
	XML Extender administration stored procedures
	dxxEnableDB() stored procedure
	dxxDisableDB() stored procedure
	dxxEnableColumn() stored procedure
	dxxDisableColumn() stored procedure
	dxxEnableCollection() stored procedure
	dxxDisableCollection() stored procedure
	XML Extender composition stored procedures
	Calling XML Extender composition stored procedures
	Stored Procedures that return CLOBS

	dxxGenXML() stored procedure
	dxxRetrieveXML() stored procedure
	dxxGenXMLClob stored procedure
	dxxRetrieveXMLClob stored procedure
	XML Extenders decomposition stored procedures
	dxxShredXML() stored procedure
	dxxInsertXML() stored procedure

	Chapter 11. MQSeries stored procedures and functions
	XML Extender stored procedures and functions for MQSeries
	MQPublishXML function
	MQReadXML function
	MQReadAllXML function
	MQReadXMLCLOB function
	MQReadAllXMLCLOB function
	MQReceiveXML function
	MQReceiveAllXML function
	MQRcvAllXMLCLOB function
	MQReceiveXMLCLOB function
	MQSENDXML function
	MQSENDXMLFILE function
	MQSendXMLFILECLOB function
	Types of stored procedures for message queues
	dxxmqGen() stored procedure
	dxxmqGenCLOB stored procedure
	dxxmqRetrieve stored procedure
	dxxmqRetrieveCLOB stored procedure
	dxxmqShred stored procedure
	dxxmqShredAll stored procedure
	dxxmqShredCLOB stored procedure
	dxxmqShredAllCLOB stored procedure
	dxxmqInsert stored procedure
	dxxmqInsertCLOB stored procedure
	dxxmqInsertAll stored procedure
	dxxmqInsertAllCLOB stored procedure

	Chapter 12. Extensible stylesheet language transformation (XSLT)
	Creating an HTML document using an XSLT stylesheet
	XSLTransformToClob() stored procedure
	XSLTransformToFile() stored procedure

	Chapter 13. XML Extender administration support tables
	DTD reference table
	XML usage table (XML_USAGE)

	Chapter 14. Troubleshooting
	Troubleshooting XML_Extender
	Starting the trace for XML Extender
	Stopping the trace
	XML Extender UDF return codes
	XML Extenders stored procedure return codes
	SQLSTATE codes and associated message numbers for XML Extender
	XML Extender messages

	Appendix A. Samples
	XML DTD sample
	XML document sample: getstart.xml
	Document access definition files
	Sample DAD file: XML column
	Sample DAD file: XML collection: SQL mapping
	Sample DAD file: XML: RDB_node mapping

	Appendix B. Code page considerations
	Terminology for XML code pages
	DB2 and XML Extender code page assumptions
	Assumptions for importing an XML document
	Assumptions for exporting an XML document

	Encoding declaration considerations for XML Extender
	Legal encoding declarations
	Consistent encodings and encoding declarations
	Consistent encodings in USS
	Declaring an encoding

	Conversion scenarios
	Recommendations for preventing inconsistent XML documents
	Line ending considerations
	Processing XML documents with the linebrk utility

	Appendix C. XML Extender limits
	Glossary
	XML Extender glossary

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information

